Description: The Extreme Value Theorem, minimum version. A continuous function from a nonempty compact topological space to the reals attains its minimum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bndth.1 | |
|
bndth.2 | |
||
bndth.3 | |
||
bndth.4 | |
||
evth.5 | |
||
Assertion | evth2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bndth.1 | |
|
2 | bndth.2 | |
|
3 | bndth.3 | |
|
4 | bndth.4 | |
|
5 | evth.5 | |
|
6 | cmptop | |
|
7 | 3 6 | syl | |
8 | 1 | toptopon | |
9 | 7 8 | sylib | |
10 | uniretop | |
|
11 | 2 | unieqi | |
12 | 10 11 | eqtr4i | |
13 | 1 12 | cnf | |
14 | 4 13 | syl | |
15 | 14 | feqmptd | |
16 | 15 4 | eqeltrrd | |
17 | retopon | |
|
18 | 2 17 | eqeltri | |
19 | 18 | a1i | |
20 | eqid | |
|
21 | 20 | cnfldtopon | |
22 | 21 | a1i | |
23 | 0cnd | |
|
24 | 19 22 23 | cnmptc | |
25 | 20 | tgioo2 | |
26 | 2 25 | eqtri | |
27 | ax-resscn | |
|
28 | 27 | a1i | |
29 | 22 | cnmptid | |
30 | 26 22 28 29 | cnmpt1res | |
31 | 20 | subcn | |
32 | 31 | a1i | |
33 | 19 24 30 32 | cnmpt12f | |
34 | df-neg | |
|
35 | renegcl | |
|
36 | 34 35 | eqeltrrid | |
37 | 36 | adantl | |
38 | 37 | fmpttd | |
39 | 38 | frnd | |
40 | cnrest2 | |
|
41 | 22 39 28 40 | syl3anc | |
42 | 33 41 | mpbid | |
43 | 26 | oveq2i | |
44 | 42 43 | eleqtrrdi | |
45 | negeq | |
|
46 | 34 45 | eqtr3id | |
47 | 9 16 19 44 46 | cnmpt11 | |
48 | 1 2 3 47 5 | evth | |
49 | fveq2 | |
|
50 | 49 | negeqd | |
51 | eqid | |
|
52 | negex | |
|
53 | 50 51 52 | fvmpt | |
54 | 53 | adantl | |
55 | fveq2 | |
|
56 | 55 | negeqd | |
57 | negex | |
|
58 | 56 51 57 | fvmpt | |
59 | 58 | ad2antlr | |
60 | 54 59 | breq12d | |
61 | 14 | ffvelcdmda | |
62 | 61 | adantr | |
63 | 14 | ffvelcdmda | |
64 | 63 | adantlr | |
65 | 62 64 | lenegd | |
66 | 60 65 | bitr4d | |
67 | 66 | ralbidva | |
68 | 67 | rexbidva | |
69 | 48 68 | mpbid | |