Metamath Proof Explorer


Theorem evth2

Description: The Extreme Value Theorem, minimum version. A continuous function from a nonempty compact topological space to the reals attains its minimum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses bndth.1 X=J
bndth.2 K=topGenran.
bndth.3 φJComp
bndth.4 φFJCnK
evth.5 φX
Assertion evth2 φxXyXFxFy

Proof

Step Hyp Ref Expression
1 bndth.1 X=J
2 bndth.2 K=topGenran.
3 bndth.3 φJComp
4 bndth.4 φFJCnK
5 evth.5 φX
6 cmptop JCompJTop
7 3 6 syl φJTop
8 1 toptopon JTopJTopOnX
9 7 8 sylib φJTopOnX
10 uniretop =topGenran.
11 2 unieqi K=topGenran.
12 10 11 eqtr4i =K
13 1 12 cnf FJCnKF:X
14 4 13 syl φF:X
15 14 feqmptd φF=zXFz
16 15 4 eqeltrrd φzXFzJCnK
17 retopon topGenran.TopOn
18 2 17 eqeltri KTopOn
19 18 a1i φKTopOn
20 eqid TopOpenfld=TopOpenfld
21 20 cnfldtopon TopOpenfldTopOn
22 21 a1i φTopOpenfldTopOn
23 0cnd φ0
24 19 22 23 cnmptc φy0KCnTopOpenfld
25 20 tgioo2 topGenran.=TopOpenfld𝑡
26 2 25 eqtri K=TopOpenfld𝑡
27 ax-resscn
28 27 a1i φ
29 22 cnmptid φyyTopOpenfldCnTopOpenfld
30 26 22 28 29 cnmpt1res φyyKCnTopOpenfld
31 20 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
32 31 a1i φTopOpenfld×tTopOpenfldCnTopOpenfld
33 19 24 30 32 cnmpt12f φy0yKCnTopOpenfld
34 df-neg y=0y
35 renegcl yy
36 34 35 eqeltrrid y0y
37 36 adantl φy0y
38 37 fmpttd φy0y:
39 38 frnd φrany0y
40 cnrest2 TopOpenfldTopOnrany0yy0yKCnTopOpenfldy0yKCnTopOpenfld𝑡
41 22 39 28 40 syl3anc φy0yKCnTopOpenfldy0yKCnTopOpenfld𝑡
42 33 41 mpbid φy0yKCnTopOpenfld𝑡
43 26 oveq2i KCnK=KCnTopOpenfld𝑡
44 42 43 eleqtrrdi φy0yKCnK
45 negeq y=Fzy=Fz
46 34 45 eqtr3id y=Fz0y=Fz
47 9 16 19 44 46 cnmpt11 φzXFzJCnK
48 1 2 3 47 5 evth φxXyXzXFzyzXFzx
49 fveq2 z=yFz=Fy
50 49 negeqd z=yFz=Fy
51 eqid zXFz=zXFz
52 negex FyV
53 50 51 52 fvmpt yXzXFzy=Fy
54 53 adantl φxXyXzXFzy=Fy
55 fveq2 z=xFz=Fx
56 55 negeqd z=xFz=Fx
57 negex FxV
58 56 51 57 fvmpt xXzXFzx=Fx
59 58 ad2antlr φxXyXzXFzx=Fx
60 54 59 breq12d φxXyXzXFzyzXFzxFyFx
61 14 ffvelcdmda φxXFx
62 61 adantr φxXyXFx
63 14 ffvelcdmda φyXFy
64 63 adantlr φxXyXFy
65 62 64 lenegd φxXyXFxFyFyFx
66 60 65 bitr4d φxXyXzXFzyzXFzxFxFy
67 66 ralbidva φxXyXzXFzyzXFzxyXFxFy
68 67 rexbidva φxXyXzXFzyzXFzxxXyXFxFy
69 48 68 mpbid φxXyXFxFy