Metamath Proof Explorer


Theorem evth

Description: The Extreme Value Theorem. A continuous function from a nonempty compact topological space to the reals attains its maximum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses bndth.1 X=J
bndth.2 K=topGenran.
bndth.3 φJComp
bndth.4 φFJCnK
evth.5 φX
Assertion evth φxXyXFyFx

Proof

Step Hyp Ref Expression
1 bndth.1 X=J
2 bndth.2 K=topGenran.
3 bndth.3 φJComp
4 bndth.4 φFJCnK
5 evth.5 φX
6 3 adantr φF:XsupranF<JComp
7 cmptop JCompJTop
8 6 7 syl φF:XsupranF<JTop
9 1 toptopon JTopJTopOnX
10 8 9 sylib φF:XsupranF<JTopOnX
11 eqid TopOpenfld=TopOpenfld
12 11 cnfldtopon TopOpenfldTopOn
13 12 a1i φF:XsupranF<TopOpenfldTopOn
14 1cnd φF:XsupranF<1
15 10 13 14 cnmptc φF:XsupranF<zX1JCnTopOpenfld
16 uniretop =topGenran.
17 2 unieqi K=topGenran.
18 16 17 eqtr4i =K
19 1 18 cnf FJCnKF:X
20 4 19 syl φF:X
21 20 frnd φranF
22 20 fdmd φdomF=X
23 22 5 eqnetrd φdomF
24 dm0rn0 domF=ranF=
25 24 necon3bii domFranF
26 23 25 sylib φranF
27 1 2 3 4 bndth φxyXFyx
28 20 ffnd φFFnX
29 breq1 z=FyzxFyx
30 29 ralrn FFnXzranFzxyXFyx
31 28 30 syl φzranFzxyXFyx
32 31 rexbidv φxzranFzxxyXFyx
33 27 32 mpbird φxzranFzx
34 21 26 33 3jca φranFranFxzranFzx
35 suprcl ranFranFxzranFzxsupranF<
36 34 35 syl φsupranF<
37 36 recnd φsupranF<
38 37 adantr φF:XsupranF<supranF<
39 10 13 38 cnmptc φF:XsupranF<zXsupranF<JCnTopOpenfld
40 20 feqmptd φF=zXFz
41 11 cnfldtop TopOpenfldTop
42 cnrest2r TopOpenfldTopJCnTopOpenfld𝑡JCnTopOpenfld
43 41 42 ax-mp JCnTopOpenfld𝑡JCnTopOpenfld
44 11 tgioo2 topGenran.=TopOpenfld𝑡
45 2 44 eqtri K=TopOpenfld𝑡
46 45 oveq2i JCnK=JCnTopOpenfld𝑡
47 4 46 eleqtrdi φFJCnTopOpenfld𝑡
48 43 47 sselid φFJCnTopOpenfld
49 40 48 eqeltrrd φzXFzJCnTopOpenfld
50 49 adantr φF:XsupranF<zXFzJCnTopOpenfld
51 11 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
52 51 a1i φF:XsupranF<TopOpenfld×tTopOpenfldCnTopOpenfld
53 10 39 50 52 cnmpt12f φF:XsupranF<zXsupranF<FzJCnTopOpenfld
54 36 ad2antrr φF:XsupranF<zXsupranF<
55 ffvelcdm F:XsupranF<zXFzsupranF<
56 55 adantll φF:XsupranF<zXFzsupranF<
57 eldifsn FzsupranF<FzFzsupranF<
58 56 57 sylib φF:XsupranF<zXFzFzsupranF<
59 58 simpld φF:XsupranF<zXFz
60 54 59 resubcld φF:XsupranF<zXsupranF<Fz
61 60 recnd φF:XsupranF<zXsupranF<Fz
62 54 recnd φF:XsupranF<zXsupranF<
63 59 recnd φF:XsupranF<zXFz
64 58 simprd φF:XsupranF<zXFzsupranF<
65 64 necomd φF:XsupranF<zXsupranF<Fz
66 62 63 65 subne0d φF:XsupranF<zXsupranF<Fz0
67 eldifsn supranF<Fz0supranF<FzsupranF<Fz0
68 61 66 67 sylanbrc φF:XsupranF<zXsupranF<Fz0
69 68 fmpttd φF:XsupranF<zXsupranF<Fz:X0
70 69 frnd φF:XsupranF<ranzXsupranF<Fz0
71 difssd φF:XsupranF<0
72 cnrest2 TopOpenfldTopOnranzXsupranF<Fz00zXsupranF<FzJCnTopOpenfldzXsupranF<FzJCnTopOpenfld𝑡0
73 13 70 71 72 syl3anc φF:XsupranF<zXsupranF<FzJCnTopOpenfldzXsupranF<FzJCnTopOpenfld𝑡0
74 53 73 mpbid φF:XsupranF<zXsupranF<FzJCnTopOpenfld𝑡0
75 eqid TopOpenfld𝑡0=TopOpenfld𝑡0
76 11 75 divcn ÷TopOpenfld×tTopOpenfld𝑡0CnTopOpenfld
77 76 a1i φF:XsupranF<÷TopOpenfld×tTopOpenfld𝑡0CnTopOpenfld
78 10 15 74 77 cnmpt12f φF:XsupranF<zX1supranF<FzJCnTopOpenfld
79 60 66 rereccld φF:XsupranF<zX1supranF<Fz
80 79 fmpttd φF:XsupranF<zX1supranF<Fz:X
81 80 frnd φF:XsupranF<ranzX1supranF<Fz
82 ax-resscn
83 82 a1i φF:XsupranF<
84 cnrest2 TopOpenfldTopOnranzX1supranF<FzzX1supranF<FzJCnTopOpenfldzX1supranF<FzJCnTopOpenfld𝑡
85 13 81 83 84 syl3anc φF:XsupranF<zX1supranF<FzJCnTopOpenfldzX1supranF<FzJCnTopOpenfld𝑡
86 78 85 mpbid φF:XsupranF<zX1supranF<FzJCnTopOpenfld𝑡
87 86 46 eleqtrrdi φF:XsupranF<zX1supranF<FzJCnK
88 1 2 6 87 bndth φF:XsupranF<xyXzX1supranF<Fzyx
89 36 ad2antrr φF:XsupranF<xsupranF<
90 simpr φF:XsupranF<xx
91 1re 1
92 ifcl x1if1xx1
93 90 91 92 sylancl φF:XsupranF<xif1xx1
94 0red φF:XsupranF<x0
95 91 a1i φF:XsupranF<x1
96 0lt1 0<1
97 96 a1i φF:XsupranF<x0<1
98 max1 1x1if1xx1
99 91 90 98 sylancr φF:XsupranF<x1if1xx1
100 94 95 93 97 99 ltletrd φF:XsupranF<x0<if1xx1
101 100 gt0ne0d φF:XsupranF<xif1xx10
102 93 101 rereccld φF:XsupranF<x1if1xx1
103 93 100 recgt0d φF:XsupranF<x0<1if1xx1
104 102 103 elrpd φF:XsupranF<x1if1xx1+
105 89 104 ltsubrpd φF:XsupranF<xsupranF<1if1xx1<supranF<
106 89 102 resubcld φF:XsupranF<xsupranF<1if1xx1
107 106 89 ltnled φF:XsupranF<xsupranF<1if1xx1<supranF<¬supranF<supranF<1if1xx1
108 105 107 mpbid φF:XsupranF<x¬supranF<supranF<1if1xx1
109 simprl φF:XsupranF<xyXx
110 max2 1xxif1xx1
111 91 109 110 sylancr φF:XsupranF<xyXxif1xx1
112 36 ad2antrr φF:XsupranF<xyXsupranF<
113 ffvelcdm F:XsupranF<yXFysupranF<
114 113 ad2ant2l φF:XsupranF<xyXFysupranF<
115 eldifsn FysupranF<FyFysupranF<
116 114 115 sylib φF:XsupranF<xyXFyFysupranF<
117 116 simpld φF:XsupranF<xyXFy
118 112 117 resubcld φF:XsupranF<xyXsupranF<Fy
119 fnfvelrn FFnXyXFyranF
120 28 119 sylan φyXFyranF
121 suprub ranFranFxzranFzxFyranFFysupranF<
122 34 120 121 syl2an2r φyXFysupranF<
123 122 ad2ant2rl φF:XsupranF<xyXFysupranF<
124 116 simprd φF:XsupranF<xyXFysupranF<
125 124 necomd φF:XsupranF<xyXsupranF<Fy
126 117 112 123 125 leneltd φF:XsupranF<xyXFy<supranF<
127 117 112 posdifd φF:XsupranF<xyXFy<supranF<0<supranF<Fy
128 126 127 mpbid φF:XsupranF<xyX0<supranF<Fy
129 128 gt0ne0d φF:XsupranF<xyXsupranF<Fy0
130 118 129 rereccld φF:XsupranF<xyX1supranF<Fy
131 109 91 92 sylancl φF:XsupranF<xyXif1xx1
132 letr 1supranF<Fyxif1xx11supranF<Fyxxif1xx11supranF<Fyif1xx1
133 130 109 131 132 syl3anc φF:XsupranF<xyX1supranF<Fyxxif1xx11supranF<Fyif1xx1
134 111 133 mpan2d φF:XsupranF<xyX1supranF<Fyx1supranF<Fyif1xx1
135 fveq2 z=yFz=Fy
136 135 oveq2d z=ysupranF<Fz=supranF<Fy
137 136 oveq2d z=y1supranF<Fz=1supranF<Fy
138 eqid zX1supranF<Fz=zX1supranF<Fz
139 ovex 1supranF<FyV
140 137 138 139 fvmpt yXzX1supranF<Fzy=1supranF<Fy
141 140 breq1d yXzX1supranF<Fzyx1supranF<Fyx
142 141 ad2antll φF:XsupranF<xyXzX1supranF<Fzyx1supranF<Fyx
143 102 adantrr φF:XsupranF<xyX1if1xx1
144 100 adantrr φF:XsupranF<xyX0<if1xx1
145 131 144 recgt0d φF:XsupranF<xyX0<1if1xx1
146 lerec 1if1xx10<1if1xx1supranF<Fy0<supranF<Fy1if1xx1supranF<Fy1supranF<Fy11if1xx1
147 143 145 118 128 146 syl22anc φF:XsupranF<xyX1if1xx1supranF<Fy1supranF<Fy11if1xx1
148 lesub 1if1xx1supranF<Fy1if1xx1supranF<FyFysupranF<1if1xx1
149 143 112 117 148 syl3anc φF:XsupranF<xyX1if1xx1supranF<FyFysupranF<1if1xx1
150 131 recnd φF:XsupranF<xyXif1xx1
151 101 adantrr φF:XsupranF<xyXif1xx10
152 150 151 recrecd φF:XsupranF<xyX11if1xx1=if1xx1
153 152 breq2d φF:XsupranF<xyX1supranF<Fy11if1xx11supranF<Fyif1xx1
154 147 149 153 3bitr3d φF:XsupranF<xyXFysupranF<1if1xx11supranF<Fyif1xx1
155 134 142 154 3imtr4d φF:XsupranF<xyXzX1supranF<FzyxFysupranF<1if1xx1
156 155 anassrs φF:XsupranF<xyXzX1supranF<FzyxFysupranF<1if1xx1
157 156 ralimdva φF:XsupranF<xyXzX1supranF<FzyxyXFysupranF<1if1xx1
158 34 ad2antrr φF:XsupranF<xranFranFxzranFzx
159 suprleub ranFranFxzranFzxsupranF<1if1xx1supranF<supranF<1if1xx1zranFzsupranF<1if1xx1
160 158 106 159 syl2anc φF:XsupranF<xsupranF<supranF<1if1xx1zranFzsupranF<1if1xx1
161 28 ad2antrr φF:XsupranF<xFFnX
162 breq1 z=FyzsupranF<1if1xx1FysupranF<1if1xx1
163 162 ralrn FFnXzranFzsupranF<1if1xx1yXFysupranF<1if1xx1
164 161 163 syl φF:XsupranF<xzranFzsupranF<1if1xx1yXFysupranF<1if1xx1
165 160 164 bitrd φF:XsupranF<xsupranF<supranF<1if1xx1yXFysupranF<1if1xx1
166 157 165 sylibrd φF:XsupranF<xyXzX1supranF<FzyxsupranF<supranF<1if1xx1
167 108 166 mtod φF:XsupranF<x¬yXzX1supranF<Fzyx
168 167 nrexdv φF:XsupranF<¬xyXzX1supranF<Fzyx
169 88 168 pm2.65da φ¬F:XsupranF<
170 122 ralrimiva φyXFysupranF<
171 breq2 Fx=supranF<FyFxFysupranF<
172 171 ralbidv Fx=supranF<yXFyFxyXFysupranF<
173 170 172 syl5ibrcom φFx=supranF<yXFyFx
174 173 necon3bd φ¬yXFyFxFxsupranF<
175 174 adantr φxX¬yXFyFxFxsupranF<
176 20 ffvelcdmda φxXFx
177 eldifsn FxsupranF<FxFxsupranF<
178 177 baib FxFxsupranF<FxsupranF<
179 176 178 syl φxXFxsupranF<FxsupranF<
180 175 179 sylibrd φxX¬yXFyFxFxsupranF<
181 180 ralimdva φxX¬yXFyFxxXFxsupranF<
182 ffnfv F:XsupranF<FFnXxXFxsupranF<
183 182 baib FFnXF:XsupranF<xXFxsupranF<
184 28 183 syl φF:XsupranF<xXFxsupranF<
185 181 184 sylibrd φxX¬yXFyFxF:XsupranF<
186 169 185 mtod φ¬xX¬yXFyFx
187 dfrex2 xXyXFyFx¬xX¬yXFyFx
188 186 187 sylibr φxXyXFyFx