| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bndth.1 |
|- X = U. J |
| 2 |
|
bndth.2 |
|- K = ( topGen ` ran (,) ) |
| 3 |
|
bndth.3 |
|- ( ph -> J e. Comp ) |
| 4 |
|
bndth.4 |
|- ( ph -> F e. ( J Cn K ) ) |
| 5 |
|
evth.5 |
|- ( ph -> X =/= (/) ) |
| 6 |
3
|
adantr |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> J e. Comp ) |
| 7 |
|
cmptop |
|- ( J e. Comp -> J e. Top ) |
| 8 |
6 7
|
syl |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> J e. Top ) |
| 9 |
1
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 10 |
8 9
|
sylib |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> J e. ( TopOn ` X ) ) |
| 11 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 12 |
11
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 13 |
12
|
a1i |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 14 |
|
1cnd |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> 1 e. CC ) |
| 15 |
10 13 14
|
cnmptc |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> 1 ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 16 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 17 |
2
|
unieqi |
|- U. K = U. ( topGen ` ran (,) ) |
| 18 |
16 17
|
eqtr4i |
|- RR = U. K |
| 19 |
1 18
|
cnf |
|- ( F e. ( J Cn K ) -> F : X --> RR ) |
| 20 |
4 19
|
syl |
|- ( ph -> F : X --> RR ) |
| 21 |
20
|
frnd |
|- ( ph -> ran F C_ RR ) |
| 22 |
20
|
fdmd |
|- ( ph -> dom F = X ) |
| 23 |
22 5
|
eqnetrd |
|- ( ph -> dom F =/= (/) ) |
| 24 |
|
dm0rn0 |
|- ( dom F = (/) <-> ran F = (/) ) |
| 25 |
24
|
necon3bii |
|- ( dom F =/= (/) <-> ran F =/= (/) ) |
| 26 |
23 25
|
sylib |
|- ( ph -> ran F =/= (/) ) |
| 27 |
1 2 3 4
|
bndth |
|- ( ph -> E. x e. RR A. y e. X ( F ` y ) <_ x ) |
| 28 |
20
|
ffnd |
|- ( ph -> F Fn X ) |
| 29 |
|
breq1 |
|- ( z = ( F ` y ) -> ( z <_ x <-> ( F ` y ) <_ x ) ) |
| 30 |
29
|
ralrn |
|- ( F Fn X -> ( A. z e. ran F z <_ x <-> A. y e. X ( F ` y ) <_ x ) ) |
| 31 |
28 30
|
syl |
|- ( ph -> ( A. z e. ran F z <_ x <-> A. y e. X ( F ` y ) <_ x ) ) |
| 32 |
31
|
rexbidv |
|- ( ph -> ( E. x e. RR A. z e. ran F z <_ x <-> E. x e. RR A. y e. X ( F ` y ) <_ x ) ) |
| 33 |
27 32
|
mpbird |
|- ( ph -> E. x e. RR A. z e. ran F z <_ x ) |
| 34 |
21 26 33
|
3jca |
|- ( ph -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) ) |
| 35 |
|
suprcl |
|- ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) -> sup ( ran F , RR , < ) e. RR ) |
| 36 |
34 35
|
syl |
|- ( ph -> sup ( ran F , RR , < ) e. RR ) |
| 37 |
36
|
recnd |
|- ( ph -> sup ( ran F , RR , < ) e. CC ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> sup ( ran F , RR , < ) e. CC ) |
| 39 |
10 13 38
|
cnmptc |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> sup ( ran F , RR , < ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 40 |
20
|
feqmptd |
|- ( ph -> F = ( z e. X |-> ( F ` z ) ) ) |
| 41 |
11
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 42 |
|
cnrest2r |
|- ( ( TopOpen ` CCfld ) e. Top -> ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) C_ ( J Cn ( TopOpen ` CCfld ) ) ) |
| 43 |
41 42
|
ax-mp |
|- ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) C_ ( J Cn ( TopOpen ` CCfld ) ) |
| 44 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 45 |
2 44
|
eqtri |
|- K = ( ( TopOpen ` CCfld ) |`t RR ) |
| 46 |
45
|
oveq2i |
|- ( J Cn K ) = ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 47 |
4 46
|
eleqtrdi |
|- ( ph -> F e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
| 48 |
43 47
|
sselid |
|- ( ph -> F e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 49 |
40 48
|
eqeltrrd |
|- ( ph -> ( z e. X |-> ( F ` z ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( F ` z ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 51 |
11
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 52 |
51
|
a1i |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 53 |
10 39 50 52
|
cnmpt12f |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 54 |
36
|
ad2antrr |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> sup ( ran F , RR , < ) e. RR ) |
| 55 |
|
ffvelcdm |
|- ( ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) /\ z e. X ) -> ( F ` z ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) |
| 56 |
55
|
adantll |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( F ` z ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) |
| 57 |
|
eldifsn |
|- ( ( F ` z ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) =/= sup ( ran F , RR , < ) ) ) |
| 58 |
56 57
|
sylib |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( ( F ` z ) e. RR /\ ( F ` z ) =/= sup ( ran F , RR , < ) ) ) |
| 59 |
58
|
simpld |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( F ` z ) e. RR ) |
| 60 |
54 59
|
resubcld |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( sup ( ran F , RR , < ) - ( F ` z ) ) e. RR ) |
| 61 |
60
|
recnd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( sup ( ran F , RR , < ) - ( F ` z ) ) e. CC ) |
| 62 |
54
|
recnd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> sup ( ran F , RR , < ) e. CC ) |
| 63 |
59
|
recnd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( F ` z ) e. CC ) |
| 64 |
58
|
simprd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( F ` z ) =/= sup ( ran F , RR , < ) ) |
| 65 |
64
|
necomd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> sup ( ran F , RR , < ) =/= ( F ` z ) ) |
| 66 |
62 63 65
|
subne0d |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( sup ( ran F , RR , < ) - ( F ` z ) ) =/= 0 ) |
| 67 |
|
eldifsn |
|- ( ( sup ( ran F , RR , < ) - ( F ` z ) ) e. ( CC \ { 0 } ) <-> ( ( sup ( ran F , RR , < ) - ( F ` z ) ) e. CC /\ ( sup ( ran F , RR , < ) - ( F ` z ) ) =/= 0 ) ) |
| 68 |
61 66 67
|
sylanbrc |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( sup ( ran F , RR , < ) - ( F ` z ) ) e. ( CC \ { 0 } ) ) |
| 69 |
68
|
fmpttd |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) : X --> ( CC \ { 0 } ) ) |
| 70 |
69
|
frnd |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ran ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) C_ ( CC \ { 0 } ) ) |
| 71 |
|
difssd |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( CC \ { 0 } ) C_ CC ) |
| 72 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) C_ ( CC \ { 0 } ) /\ ( CC \ { 0 } ) C_ CC ) -> ( ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) ) ) |
| 73 |
13 70 71 72
|
syl3anc |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) ) ) |
| 74 |
53 73
|
mpbid |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) ) |
| 75 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) |
| 76 |
11 75
|
divcn |
|- / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) |
| 77 |
76
|
a1i |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 78 |
10 15 74 77
|
cnmpt12f |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 79 |
60 66
|
rereccld |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. RR ) |
| 80 |
79
|
fmpttd |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) : X --> RR ) |
| 81 |
80
|
frnd |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ran ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) C_ RR ) |
| 82 |
|
ax-resscn |
|- RR C_ CC |
| 83 |
82
|
a1i |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> RR C_ CC ) |
| 84 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) C_ RR /\ RR C_ CC ) -> ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
| 85 |
13 81 83 84
|
syl3anc |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
| 86 |
78 85
|
mpbid |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
| 87 |
86 46
|
eleqtrrdi |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn K ) ) |
| 88 |
1 2 6 87
|
bndth |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> E. x e. RR A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x ) |
| 89 |
36
|
ad2antrr |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> sup ( ran F , RR , < ) e. RR ) |
| 90 |
|
simpr |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> x e. RR ) |
| 91 |
|
1re |
|- 1 e. RR |
| 92 |
|
ifcl |
|- ( ( x e. RR /\ 1 e. RR ) -> if ( 1 <_ x , x , 1 ) e. RR ) |
| 93 |
90 91 92
|
sylancl |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> if ( 1 <_ x , x , 1 ) e. RR ) |
| 94 |
|
0red |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 0 e. RR ) |
| 95 |
91
|
a1i |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 1 e. RR ) |
| 96 |
|
0lt1 |
|- 0 < 1 |
| 97 |
96
|
a1i |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 0 < 1 ) |
| 98 |
|
max1 |
|- ( ( 1 e. RR /\ x e. RR ) -> 1 <_ if ( 1 <_ x , x , 1 ) ) |
| 99 |
91 90 98
|
sylancr |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 1 <_ if ( 1 <_ x , x , 1 ) ) |
| 100 |
94 95 93 97 99
|
ltletrd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 0 < if ( 1 <_ x , x , 1 ) ) |
| 101 |
100
|
gt0ne0d |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> if ( 1 <_ x , x , 1 ) =/= 0 ) |
| 102 |
93 101
|
rereccld |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR ) |
| 103 |
93 100
|
recgt0d |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 0 < ( 1 / if ( 1 <_ x , x , 1 ) ) ) |
| 104 |
102 103
|
elrpd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR+ ) |
| 105 |
89 104
|
ltsubrpd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) < sup ( ran F , RR , < ) ) |
| 106 |
89 102
|
resubcld |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) e. RR ) |
| 107 |
106 89
|
ltnled |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) < sup ( ran F , RR , < ) <-> -. sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 108 |
105 107
|
mpbid |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> -. sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) |
| 109 |
|
simprl |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> x e. RR ) |
| 110 |
|
max2 |
|- ( ( 1 e. RR /\ x e. RR ) -> x <_ if ( 1 <_ x , x , 1 ) ) |
| 111 |
91 109 110
|
sylancr |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> x <_ if ( 1 <_ x , x , 1 ) ) |
| 112 |
36
|
ad2antrr |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> sup ( ran F , RR , < ) e. RR ) |
| 113 |
|
ffvelcdm |
|- ( ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) /\ y e. X ) -> ( F ` y ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) |
| 114 |
113
|
ad2ant2l |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) |
| 115 |
|
eldifsn |
|- ( ( F ` y ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( ( F ` y ) e. RR /\ ( F ` y ) =/= sup ( ran F , RR , < ) ) ) |
| 116 |
114 115
|
sylib |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( F ` y ) e. RR /\ ( F ` y ) =/= sup ( ran F , RR , < ) ) ) |
| 117 |
116
|
simpld |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) e. RR ) |
| 118 |
112 117
|
resubcld |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( sup ( ran F , RR , < ) - ( F ` y ) ) e. RR ) |
| 119 |
|
fnfvelrn |
|- ( ( F Fn X /\ y e. X ) -> ( F ` y ) e. ran F ) |
| 120 |
28 119
|
sylan |
|- ( ( ph /\ y e. X ) -> ( F ` y ) e. ran F ) |
| 121 |
|
suprub |
|- ( ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) /\ ( F ` y ) e. ran F ) -> ( F ` y ) <_ sup ( ran F , RR , < ) ) |
| 122 |
34 120 121
|
syl2an2r |
|- ( ( ph /\ y e. X ) -> ( F ` y ) <_ sup ( ran F , RR , < ) ) |
| 123 |
122
|
ad2ant2rl |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) <_ sup ( ran F , RR , < ) ) |
| 124 |
116
|
simprd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) =/= sup ( ran F , RR , < ) ) |
| 125 |
124
|
necomd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> sup ( ran F , RR , < ) =/= ( F ` y ) ) |
| 126 |
117 112 123 125
|
leneltd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) < sup ( ran F , RR , < ) ) |
| 127 |
117 112
|
posdifd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( F ` y ) < sup ( ran F , RR , < ) <-> 0 < ( sup ( ran F , RR , < ) - ( F ` y ) ) ) ) |
| 128 |
126 127
|
mpbid |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> 0 < ( sup ( ran F , RR , < ) - ( F ` y ) ) ) |
| 129 |
128
|
gt0ne0d |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( sup ( ran F , RR , < ) - ( F ` y ) ) =/= 0 ) |
| 130 |
118 129
|
rereccld |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) e. RR ) |
| 131 |
109 91 92
|
sylancl |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> if ( 1 <_ x , x , 1 ) e. RR ) |
| 132 |
|
letr |
|- ( ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) e. RR /\ x e. RR /\ if ( 1 <_ x , x , 1 ) e. RR ) -> ( ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x /\ x <_ if ( 1 <_ x , x , 1 ) ) -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) |
| 133 |
130 109 131 132
|
syl3anc |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x /\ x <_ if ( 1 <_ x , x , 1 ) ) -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) |
| 134 |
111 133
|
mpan2d |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) |
| 135 |
|
fveq2 |
|- ( z = y -> ( F ` z ) = ( F ` y ) ) |
| 136 |
135
|
oveq2d |
|- ( z = y -> ( sup ( ran F , RR , < ) - ( F ` z ) ) = ( sup ( ran F , RR , < ) - ( F ` y ) ) ) |
| 137 |
136
|
oveq2d |
|- ( z = y -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) = ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) ) |
| 138 |
|
eqid |
|- ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) = ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) |
| 139 |
|
ovex |
|- ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) e. _V |
| 140 |
137 138 139
|
fvmpt |
|- ( y e. X -> ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) = ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) ) |
| 141 |
140
|
breq1d |
|- ( y e. X -> ( ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x ) ) |
| 142 |
141
|
ad2antll |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x ) ) |
| 143 |
102
|
adantrr |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR ) |
| 144 |
100
|
adantrr |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> 0 < if ( 1 <_ x , x , 1 ) ) |
| 145 |
131 144
|
recgt0d |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> 0 < ( 1 / if ( 1 <_ x , x , 1 ) ) ) |
| 146 |
|
lerec |
|- ( ( ( ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR /\ 0 < ( 1 / if ( 1 <_ x , x , 1 ) ) ) /\ ( ( sup ( ran F , RR , < ) - ( F ` y ) ) e. RR /\ 0 < ( sup ( ran F , RR , < ) - ( F ` y ) ) ) ) -> ( ( 1 / if ( 1 <_ x , x , 1 ) ) <_ ( sup ( ran F , RR , < ) - ( F ` y ) ) <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ ( 1 / ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 147 |
143 145 118 128 146
|
syl22anc |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( 1 / if ( 1 <_ x , x , 1 ) ) <_ ( sup ( ran F , RR , < ) - ( F ` y ) ) <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ ( 1 / ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 148 |
|
lesub |
|- ( ( ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR /\ sup ( ran F , RR , < ) e. RR /\ ( F ` y ) e. RR ) -> ( ( 1 / if ( 1 <_ x , x , 1 ) ) <_ ( sup ( ran F , RR , < ) - ( F ` y ) ) <-> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 149 |
143 112 117 148
|
syl3anc |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( 1 / if ( 1 <_ x , x , 1 ) ) <_ ( sup ( ran F , RR , < ) - ( F ` y ) ) <-> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 150 |
131
|
recnd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> if ( 1 <_ x , x , 1 ) e. CC ) |
| 151 |
101
|
adantrr |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> if ( 1 <_ x , x , 1 ) =/= 0 ) |
| 152 |
150 151
|
recrecd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( 1 / ( 1 / if ( 1 <_ x , x , 1 ) ) ) = if ( 1 <_ x , x , 1 ) ) |
| 153 |
152
|
breq2d |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ ( 1 / ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) |
| 154 |
147 149 153
|
3bitr3d |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) |
| 155 |
134 142 154
|
3imtr4d |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x -> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 156 |
155
|
anassrs |
|- ( ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) /\ y e. X ) -> ( ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x -> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 157 |
156
|
ralimdva |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x -> A. y e. X ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 158 |
34
|
ad2antrr |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) ) |
| 159 |
|
suprleub |
|- ( ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) /\ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) e. RR ) -> ( sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. z e. ran F z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 160 |
158 106 159
|
syl2anc |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. z e. ran F z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 161 |
28
|
ad2antrr |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> F Fn X ) |
| 162 |
|
breq1 |
|- ( z = ( F ` y ) -> ( z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 163 |
162
|
ralrn |
|- ( F Fn X -> ( A. z e. ran F z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. y e. X ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 164 |
161 163
|
syl |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( A. z e. ran F z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. y e. X ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 165 |
160 164
|
bitrd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. y e. X ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 166 |
157 165
|
sylibrd |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x -> sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 167 |
108 166
|
mtod |
|- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> -. A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x ) |
| 168 |
167
|
nrexdv |
|- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> -. E. x e. RR A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x ) |
| 169 |
88 168
|
pm2.65da |
|- ( ph -> -. F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) |
| 170 |
122
|
ralrimiva |
|- ( ph -> A. y e. X ( F ` y ) <_ sup ( ran F , RR , < ) ) |
| 171 |
|
breq2 |
|- ( ( F ` x ) = sup ( ran F , RR , < ) -> ( ( F ` y ) <_ ( F ` x ) <-> ( F ` y ) <_ sup ( ran F , RR , < ) ) ) |
| 172 |
171
|
ralbidv |
|- ( ( F ` x ) = sup ( ran F , RR , < ) -> ( A. y e. X ( F ` y ) <_ ( F ` x ) <-> A. y e. X ( F ` y ) <_ sup ( ran F , RR , < ) ) ) |
| 173 |
170 172
|
syl5ibrcom |
|- ( ph -> ( ( F ` x ) = sup ( ran F , RR , < ) -> A. y e. X ( F ` y ) <_ ( F ` x ) ) ) |
| 174 |
173
|
necon3bd |
|- ( ph -> ( -. A. y e. X ( F ` y ) <_ ( F ` x ) -> ( F ` x ) =/= sup ( ran F , RR , < ) ) ) |
| 175 |
174
|
adantr |
|- ( ( ph /\ x e. X ) -> ( -. A. y e. X ( F ` y ) <_ ( F ` x ) -> ( F ` x ) =/= sup ( ran F , RR , < ) ) ) |
| 176 |
20
|
ffvelcdmda |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. RR ) |
| 177 |
|
eldifsn |
|- ( ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) =/= sup ( ran F , RR , < ) ) ) |
| 178 |
177
|
baib |
|- ( ( F ` x ) e. RR -> ( ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( F ` x ) =/= sup ( ran F , RR , < ) ) ) |
| 179 |
176 178
|
syl |
|- ( ( ph /\ x e. X ) -> ( ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( F ` x ) =/= sup ( ran F , RR , < ) ) ) |
| 180 |
175 179
|
sylibrd |
|- ( ( ph /\ x e. X ) -> ( -. A. y e. X ( F ` y ) <_ ( F ` x ) -> ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) |
| 181 |
180
|
ralimdva |
|- ( ph -> ( A. x e. X -. A. y e. X ( F ` y ) <_ ( F ` x ) -> A. x e. X ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) |
| 182 |
|
ffnfv |
|- ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) <-> ( F Fn X /\ A. x e. X ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) |
| 183 |
182
|
baib |
|- ( F Fn X -> ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) <-> A. x e. X ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) |
| 184 |
28 183
|
syl |
|- ( ph -> ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) <-> A. x e. X ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) |
| 185 |
181 184
|
sylibrd |
|- ( ph -> ( A. x e. X -. A. y e. X ( F ` y ) <_ ( F ` x ) -> F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) ) |
| 186 |
169 185
|
mtod |
|- ( ph -> -. A. x e. X -. A. y e. X ( F ` y ) <_ ( F ` x ) ) |
| 187 |
|
dfrex2 |
|- ( E. x e. X A. y e. X ( F ` y ) <_ ( F ` x ) <-> -. A. x e. X -. A. y e. X ( F ` y ) <_ ( F ` x ) ) |
| 188 |
186 187
|
sylibr |
|- ( ph -> E. x e. X A. y e. X ( F ` y ) <_ ( F ` x ) ) |