| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bndth.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
bndth.2 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
| 3 |
|
bndth.3 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| 4 |
|
bndth.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 5 |
|
evth.5 |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → 𝐽 ∈ Comp ) |
| 7 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → 𝐽 ∈ Top ) |
| 9 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 10 |
8 9
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 11 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 12 |
11
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 14 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → 1 ∈ ℂ ) |
| 15 |
10 13 14
|
cnmptc |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ 1 ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 16 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 17 |
2
|
unieqi |
⊢ ∪ 𝐾 = ∪ ( topGen ‘ ran (,) ) |
| 18 |
16 17
|
eqtr4i |
⊢ ℝ = ∪ 𝐾 |
| 19 |
1 18
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ℝ ) |
| 20 |
4 19
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 21 |
20
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 22 |
20
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
| 23 |
22 5
|
eqnetrd |
⊢ ( 𝜑 → dom 𝐹 ≠ ∅ ) |
| 24 |
|
dm0rn0 |
⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) |
| 25 |
24
|
necon3bii |
⊢ ( dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅ ) |
| 26 |
23 25
|
sylib |
⊢ ( 𝜑 → ran 𝐹 ≠ ∅ ) |
| 27 |
1 2 3 4
|
bndth |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) |
| 28 |
20
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 29 |
|
breq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 30 |
29
|
ralrn |
⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 31 |
28 30
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 32 |
31
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 33 |
27 32
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ) |
| 34 |
21 26 33
|
3jca |
⊢ ( 𝜑 → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ) ) |
| 35 |
|
suprcl |
⊢ ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 36 |
34 35
|
syl |
⊢ ( 𝜑 → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 37 |
36
|
recnd |
⊢ ( 𝜑 → sup ( ran 𝐹 , ℝ , < ) ∈ ℂ ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℂ ) |
| 39 |
10 13 38
|
cnmptc |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ sup ( ran 𝐹 , ℝ , < ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 40 |
20
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 41 |
11
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 42 |
|
cnrest2r |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ⊆ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 43 |
41 42
|
ax-mp |
⊢ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ⊆ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) |
| 44 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 45 |
2 44
|
eqtri |
⊢ 𝐾 = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 46 |
45
|
oveq2i |
⊢ ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 47 |
4 46
|
eleqtrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 48 |
43 47
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 49 |
40 48
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 51 |
11
|
subcn |
⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 52 |
51
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 53 |
10 39 50 52
|
cnmpt12f |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 54 |
36
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 55 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) |
| 56 |
55
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) |
| 57 |
|
eldifsn |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 58 |
56 57
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 59 |
58
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 60 |
54 59
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 61 |
60
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 62 |
54
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℂ ) |
| 63 |
59
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 64 |
58
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) |
| 65 |
64
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → sup ( ran 𝐹 , ℝ , < ) ≠ ( 𝐹 ‘ 𝑧 ) ) |
| 66 |
62 63 65
|
subne0d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ≠ 0 ) |
| 67 |
|
eldifsn |
⊢ ( ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ∧ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ≠ 0 ) ) |
| 68 |
61 66 67
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ( ℂ ∖ { 0 } ) ) |
| 69 |
68
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) : 𝑋 ⟶ ( ℂ ∖ { 0 } ) ) |
| 70 |
69
|
frnd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ran ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ⊆ ( ℂ ∖ { 0 } ) ) |
| 71 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( ℂ ∖ { 0 } ) ⊆ ℂ ) |
| 72 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ⊆ ( ℂ ∖ { 0 } ) ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ) → ( ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) ) ) |
| 73 |
13 70 71 72
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) ) ) |
| 74 |
53 73
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) ) |
| 75 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) |
| 76 |
11 75
|
divcn |
⊢ / ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 77 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → / ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 78 |
10 15 74 77
|
cnmpt12f |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 79 |
60 66
|
rereccld |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ℝ ) |
| 80 |
79
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) : 𝑋 ⟶ ℝ ) |
| 81 |
80
|
frnd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ran ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ⊆ ℝ ) |
| 82 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 83 |
82
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ℝ ⊆ ℂ ) |
| 84 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
| 85 |
13 81 83 84
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
| 86 |
78 85
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 87 |
86 46
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 88 |
1 2 6 87
|
bndth |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) |
| 89 |
36
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 90 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 91 |
|
1re |
⊢ 1 ∈ ℝ |
| 92 |
|
ifcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 1 ∈ ℝ ) → if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ∈ ℝ ) |
| 93 |
90 91 92
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ∈ ℝ ) |
| 94 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) |
| 95 |
91
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℝ ) |
| 96 |
|
0lt1 |
⊢ 0 < 1 |
| 97 |
96
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 0 < 1 ) |
| 98 |
|
max1 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → 1 ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) |
| 99 |
91 90 98
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 1 ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) |
| 100 |
94 95 93 97 99
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 0 < if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) |
| 101 |
100
|
gt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ≠ 0 ) |
| 102 |
93 101
|
rereccld |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ∈ ℝ ) |
| 103 |
93 100
|
recgt0d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 0 < ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) |
| 104 |
102 103
|
elrpd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ∈ ℝ+ ) |
| 105 |
89 104
|
ltsubrpd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) < sup ( ran 𝐹 , ℝ , < ) ) |
| 106 |
89 102
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ∈ ℝ ) |
| 107 |
106 89
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) < sup ( ran 𝐹 , ℝ , < ) ↔ ¬ sup ( ran 𝐹 , ℝ , < ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 108 |
105 107
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ¬ sup ( ran 𝐹 , ℝ , < ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) |
| 109 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ ℝ ) |
| 110 |
|
max2 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → 𝑥 ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) |
| 111 |
91 109 110
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) |
| 112 |
36
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 113 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) |
| 114 |
113
|
ad2ant2l |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) |
| 115 |
|
eldifsn |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 116 |
114 115
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 117 |
116
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 118 |
112 117
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 119 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
| 120 |
28 119
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
| 121 |
|
suprub |
⊢ ( ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) → ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
| 122 |
34 120 121
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
| 123 |
122
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
| 124 |
116
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) |
| 125 |
124
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → sup ( ran 𝐹 , ℝ , < ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
| 126 |
117 112 123 125
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) < sup ( ran 𝐹 , ℝ , < ) ) |
| 127 |
117 112
|
posdifd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) < sup ( ran 𝐹 , ℝ , < ) ↔ 0 < ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 128 |
126 127
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → 0 < ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) |
| 129 |
128
|
gt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ≠ 0 ) |
| 130 |
118 129
|
rereccld |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ∈ ℝ ) |
| 131 |
109 91 92
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ∈ ℝ ) |
| 132 |
|
letr |
⊢ ( ( ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ∈ ℝ ) → ( ( ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ 𝑥 ∧ 𝑥 ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) → ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) |
| 133 |
130 109 131 132
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ 𝑥 ∧ 𝑥 ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) → ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) |
| 134 |
111 133
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ 𝑥 → ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) |
| 135 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 136 |
135
|
oveq2d |
⊢ ( 𝑧 = 𝑦 → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) = ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) |
| 137 |
136
|
oveq2d |
⊢ ( 𝑧 = 𝑦 → ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) = ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 138 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 139 |
|
ovex |
⊢ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ∈ V |
| 140 |
137 138 139
|
fvmpt |
⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) = ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 141 |
140
|
breq1d |
⊢ ( 𝑦 ∈ 𝑋 → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 ↔ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ 𝑥 ) ) |
| 142 |
141
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 ↔ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ 𝑥 ) ) |
| 143 |
102
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ∈ ℝ ) |
| 144 |
100
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → 0 < if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) |
| 145 |
131 144
|
recgt0d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → 0 < ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) |
| 146 |
|
lerec |
⊢ ( ( ( ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ∈ ℝ ∧ 0 < ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ∧ ( ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ∧ 0 < ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ↔ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 1 / ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 147 |
143 145 118 128 146
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ↔ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 1 / ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 148 |
|
lesub |
⊢ ( ( ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ∈ ℝ ∧ sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) → ( ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 149 |
143 112 117 148
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 150 |
131
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ∈ ℂ ) |
| 151 |
101
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ≠ 0 ) |
| 152 |
150 151
|
recrecd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 1 / ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) = if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) |
| 153 |
152
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 1 / ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) |
| 154 |
147 149 153
|
3bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) |
| 155 |
134 142 154
|
3imtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 → ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 156 |
155
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 → ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 157 |
156
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 → ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 158 |
34
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ) ) |
| 159 |
|
suprleub |
⊢ ( ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ∈ ℝ ) → ( sup ( ran 𝐹 , ℝ , < ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 160 |
158 106 159
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( sup ( ran 𝐹 , ℝ , < ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 161 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 𝐹 Fn 𝑋 ) |
| 162 |
|
breq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( 𝑧 ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 163 |
162
|
ralrn |
⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 164 |
161 163
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 165 |
160 164
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( sup ( ran 𝐹 , ℝ , < ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 166 |
157 165
|
sylibrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 → sup ( ran 𝐹 , ℝ , < ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 167 |
108 166
|
mtod |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ¬ ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) |
| 168 |
167
|
nrexdv |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) |
| 169 |
88 168
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) |
| 170 |
122
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
| 171 |
|
breq2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = sup ( ran 𝐹 , ℝ , < ) → ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 172 |
171
|
ralbidv |
⊢ ( ( 𝐹 ‘ 𝑥 ) = sup ( ran 𝐹 , ℝ , < ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 173 |
170 172
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑥 ) = sup ( ran 𝐹 , ℝ , < ) → ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 174 |
173
|
necon3bd |
⊢ ( 𝜑 → ( ¬ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 175 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ¬ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 176 |
20
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 177 |
|
eldifsn |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 178 |
177
|
baib |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 179 |
176 178
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 180 |
175 179
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ¬ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ) |
| 181 |
180
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ¬ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ) |
| 182 |
|
ffnfv |
⊢ ( 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ( 𝐹 Fn 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ) |
| 183 |
182
|
baib |
⊢ ( 𝐹 Fn 𝑋 → ( 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ) |
| 184 |
28 183
|
syl |
⊢ ( 𝜑 → ( 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ) |
| 185 |
181 184
|
sylibrd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ¬ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) → 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ) |
| 186 |
169 185
|
mtod |
⊢ ( 𝜑 → ¬ ∀ 𝑥 ∈ 𝑋 ¬ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 187 |
|
dfrex2 |
⊢ ( ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝑋 ¬ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 188 |
186 187
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |