Metamath Proof Explorer


Theorem bndth

Description: The Boundedness Theorem. A continuous function from a compact topological space to the reals is bounded (above). (Boundedness below is obtained by applying this theorem to -u F .) (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses bndth.1 X = J
bndth.2 K = topGen ran .
bndth.3 φ J Comp
bndth.4 φ F J Cn K
Assertion bndth φ x y X F y x

Proof

Step Hyp Ref Expression
1 bndth.1 X = J
2 bndth.2 K = topGen ran .
3 bndth.3 φ J Comp
4 bndth.4 φ F J Cn K
5 retopon topGen ran . TopOn
6 2 5 eqeltri K TopOn
7 6 toponunii = K
8 1 7 cnf F J Cn K F : X
9 4 8 syl φ F : X
10 9 frnd φ ran F
11 unieq u = . −∞ × u = . −∞ ×
12 imassrn . −∞ × ran .
13 12 unissi . −∞ × ran .
14 unirnioo = ran .
15 13 14 sseqtrri . −∞ ×
16 id x x
17 ltp1 x x < x + 1
18 ressxr *
19 peano2re x x + 1
20 18 19 sseldi x x + 1 *
21 elioomnf x + 1 * x −∞ x + 1 x x < x + 1
22 20 21 syl x x −∞ x + 1 x x < x + 1
23 16 17 22 mpbir2and x x −∞ x + 1
24 df-ov −∞ x + 1 = . −∞ x + 1
25 mnfxr −∞ *
26 25 elexi −∞ V
27 26 snid −∞ −∞
28 opelxpi −∞ −∞ x + 1 −∞ x + 1 −∞ ×
29 27 19 28 sylancr x −∞ x + 1 −∞ ×
30 ioof . : * × * 𝒫
31 ffun . : * × * 𝒫 Fun .
32 30 31 ax-mp Fun .
33 snssi −∞ * −∞ *
34 25 33 ax-mp −∞ *
35 xpss12 −∞ * * −∞ × * × *
36 34 18 35 mp2an −∞ × * × *
37 30 fdmi dom . = * × *
38 36 37 sseqtrri −∞ × dom .
39 funfvima2 Fun . −∞ × dom . −∞ x + 1 −∞ × . −∞ x + 1 . −∞ ×
40 32 38 39 mp2an −∞ x + 1 −∞ × . −∞ x + 1 . −∞ ×
41 29 40 syl x . −∞ x + 1 . −∞ ×
42 24 41 eqeltrid x −∞ x + 1 . −∞ ×
43 elunii x −∞ x + 1 −∞ x + 1 . −∞ × x . −∞ ×
44 23 42 43 syl2anc x x . −∞ ×
45 44 ssriv . −∞ ×
46 15 45 eqssi . −∞ × =
47 11 46 eqtrdi u = . −∞ × u =
48 47 sseq2d u = . −∞ × ran F u ran F
49 pweq u = . −∞ × 𝒫 u = 𝒫 . −∞ ×
50 49 ineq1d u = . −∞ × 𝒫 u Fin = 𝒫 . −∞ × Fin
51 50 rexeqdv u = . −∞ × v 𝒫 u Fin ran F v v 𝒫 . −∞ × Fin ran F v
52 48 51 imbi12d u = . −∞ × ran F u v 𝒫 u Fin ran F v ran F v 𝒫 . −∞ × Fin ran F v
53 rncmp J Comp F J Cn K K 𝑡 ran F Comp
54 3 4 53 syl2anc φ K 𝑡 ran F Comp
55 retop topGen ran . Top
56 2 55 eqeltri K Top
57 7 cmpsub K Top ran F K 𝑡 ran F Comp u 𝒫 K ran F u v 𝒫 u Fin ran F v
58 56 10 57 sylancr φ K 𝑡 ran F Comp u 𝒫 K ran F u v 𝒫 u Fin ran F v
59 54 58 mpbid φ u 𝒫 K ran F u v 𝒫 u Fin ran F v
60 retopbas ran . TopBases
61 bastg ran . TopBases ran . topGen ran .
62 60 61 ax-mp ran . topGen ran .
63 62 2 sseqtrri ran . K
64 12 63 sstri . −∞ × K
65 56 64 elpwi2 . −∞ × 𝒫 K
66 65 a1i φ . −∞ × 𝒫 K
67 52 59 66 rspcdva φ ran F v 𝒫 . −∞ × Fin ran F v
68 10 67 mpd φ v 𝒫 . −∞ × Fin ran F v
69 simpr φ v 𝒫 . −∞ × Fin v 𝒫 . −∞ × Fin
70 elin v 𝒫 . −∞ × Fin v 𝒫 . −∞ × v Fin
71 69 70 sylib φ v 𝒫 . −∞ × Fin v 𝒫 . −∞ × v Fin
72 71 adantrr φ v 𝒫 . −∞ × Fin ran F v v 𝒫 . −∞ × v Fin
73 72 simprd φ v 𝒫 . −∞ × Fin ran F v v Fin
74 71 simpld φ v 𝒫 . −∞ × Fin v 𝒫 . −∞ ×
75 74 elpwid φ v 𝒫 . −∞ × Fin v . −∞ ×
76 34 sseli u −∞ u *
77 76 adantr u −∞ w u *
78 18 sseli w w *
79 78 adantl u −∞ w w *
80 mnflt w −∞ < w
81 xrltnle −∞ * w * −∞ < w ¬ w −∞
82 25 78 81 sylancr w −∞ < w ¬ w −∞
83 80 82 mpbid w ¬ w −∞
84 83 adantl u −∞ w ¬ w −∞
85 elsni u −∞ u = −∞
86 85 adantr u −∞ w u = −∞
87 86 breq2d u −∞ w w u w −∞
88 84 87 mtbird u −∞ w ¬ w u
89 ioo0 u * w * u w = w u
90 76 78 89 syl2an u −∞ w u w = w u
91 90 necon3abid u −∞ w u w ¬ w u
92 88 91 mpbird u −∞ w u w
93 df-ioo . = y * , z * v * | y < v v < z
94 idd x * w * x < w x < w
95 xrltle x * w * x < w x w
96 idd u * x * u < x u < x
97 xrltle u * x * u < x u x
98 93 94 95 96 97 ixxub u * w * u w sup u w * < = w
99 77 79 92 98 syl3anc u −∞ w sup u w * < = w
100 simpr u −∞ w w
101 99 100 eqeltrd u −∞ w sup u w * <
102 101 rgen2 u −∞ w sup u w * <
103 fveq2 z = u w . z = . u w
104 df-ov u w = . u w
105 103 104 eqtr4di z = u w . z = u w
106 105 supeq1d z = u w sup . z * < = sup u w * <
107 106 eleq1d z = u w sup . z * < sup u w * <
108 107 ralxp z −∞ × sup . z * < u −∞ w sup u w * <
109 102 108 mpbir z −∞ × sup . z * <
110 ffn . : * × * 𝒫 . Fn * × *
111 30 110 ax-mp . Fn * × *
112 supeq1 w = . z sup w * < = sup . z * <
113 112 eleq1d w = . z sup w * < sup . z * <
114 113 ralima . Fn * × * −∞ × * × * w . −∞ × sup w * < z −∞ × sup . z * <
115 111 36 114 mp2an w . −∞ × sup w * < z −∞ × sup . z * <
116 109 115 mpbir w . −∞ × sup w * <
117 ssralv v . −∞ × w . −∞ × sup w * < w v sup w * <
118 75 116 117 mpisyl φ v 𝒫 . −∞ × Fin w v sup w * <
119 118 adantrr φ v 𝒫 . −∞ × Fin ran F v w v sup w * <
120 fimaxre3 v Fin w v sup w * < x w v sup w * < x
121 73 119 120 syl2anc φ v 𝒫 . −∞ × Fin ran F v x w v sup w * < x
122 simplrr φ v 𝒫 . −∞ × Fin ran F v x ran F v
123 122 sselda φ v 𝒫 . −∞ × Fin ran F v x z ran F z v
124 eluni2 z v w v z w
125 r19.29r w v z w w v sup w * < x w v z w sup w * < x
126 sspwuni . −∞ × 𝒫 . −∞ ×
127 15 126 mpbir . −∞ × 𝒫
128 75 3ad2ant1 φ v 𝒫 . −∞ × Fin x w v z w sup w * < x v . −∞ ×
129 simp2r φ v 𝒫 . −∞ × Fin x w v z w sup w * < x w v
130 128 129 sseldd φ v 𝒫 . −∞ × Fin x w v z w sup w * < x w . −∞ ×
131 127 130 sseldi φ v 𝒫 . −∞ × Fin x w v z w sup w * < x w 𝒫
132 131 elpwid φ v 𝒫 . −∞ × Fin x w v z w sup w * < x w
133 simp3l φ v 𝒫 . −∞ × Fin x w v z w sup w * < x z w
134 132 133 sseldd φ v 𝒫 . −∞ × Fin x w v z w sup w * < x z
135 118 r19.21bi φ v 𝒫 . −∞ × Fin w v sup w * <
136 135 adantrl φ v 𝒫 . −∞ × Fin x w v sup w * <
137 136 3adant3 φ v 𝒫 . −∞ × Fin x w v z w sup w * < x sup w * <
138 simp2l φ v 𝒫 . −∞ × Fin x w v z w sup w * < x x
139 132 18 sstrdi φ v 𝒫 . −∞ × Fin x w v z w sup w * < x w *
140 supxrub w * z w z sup w * <
141 139 133 140 syl2anc φ v 𝒫 . −∞ × Fin x w v z w sup w * < x z sup w * <
142 simp3r φ v 𝒫 . −∞ × Fin x w v z w sup w * < x sup w * < x
143 134 137 138 141 142 letrd φ v 𝒫 . −∞ × Fin x w v z w sup w * < x z x
144 143 3expia φ v 𝒫 . −∞ × Fin x w v z w sup w * < x z x
145 144 anassrs φ v 𝒫 . −∞ × Fin x w v z w sup w * < x z x
146 145 rexlimdva φ v 𝒫 . −∞ × Fin x w v z w sup w * < x z x
147 146 adantlrr φ v 𝒫 . −∞ × Fin ran F v x w v z w sup w * < x z x
148 125 147 syl5 φ v 𝒫 . −∞ × Fin ran F v x w v z w w v sup w * < x z x
149 148 expdimp φ v 𝒫 . −∞ × Fin ran F v x w v z w w v sup w * < x z x
150 124 149 sylan2b φ v 𝒫 . −∞ × Fin ran F v x z v w v sup w * < x z x
151 123 150 syldan φ v 𝒫 . −∞ × Fin ran F v x z ran F w v sup w * < x z x
152 151 ralrimdva φ v 𝒫 . −∞ × Fin ran F v x w v sup w * < x z ran F z x
153 9 ffnd φ F Fn X
154 153 ad2antrr φ v 𝒫 . −∞ × Fin ran F v x F Fn X
155 breq1 z = F y z x F y x
156 155 ralrn F Fn X z ran F z x y X F y x
157 154 156 syl φ v 𝒫 . −∞ × Fin ran F v x z ran F z x y X F y x
158 152 157 sylibd φ v 𝒫 . −∞ × Fin ran F v x w v sup w * < x y X F y x
159 158 reximdva φ v 𝒫 . −∞ × Fin ran F v x w v sup w * < x x y X F y x
160 121 159 mpd φ v 𝒫 . −∞ × Fin ran F v x y X F y x
161 68 160 rexlimddv φ x y X F y x