Metamath Proof Explorer


Theorem rncmp

Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion rncmp J Comp F J Cn K K 𝑡 ran F Comp

Proof

Step Hyp Ref Expression
1 simpl J Comp F J Cn K J Comp
2 eqid J = J
3 eqid K = K
4 2 3 cnf F J Cn K F : J K
5 4 adantl J Comp F J Cn K F : J K
6 5 ffnd J Comp F J Cn K F Fn J
7 dffn4 F Fn J F : J onto ran F
8 6 7 sylib J Comp F J Cn K F : J onto ran F
9 cntop2 F J Cn K K Top
10 9 adantl J Comp F J Cn K K Top
11 5 frnd J Comp F J Cn K ran F K
12 3 restuni K Top ran F K ran F = K 𝑡 ran F
13 10 11 12 syl2anc J Comp F J Cn K ran F = K 𝑡 ran F
14 foeq3 ran F = K 𝑡 ran F F : J onto ran F F : J onto K 𝑡 ran F
15 13 14 syl J Comp F J Cn K F : J onto ran F F : J onto K 𝑡 ran F
16 8 15 mpbid J Comp F J Cn K F : J onto K 𝑡 ran F
17 simpr J Comp F J Cn K F J Cn K
18 toptopon2 K Top K TopOn K
19 10 18 sylib J Comp F J Cn K K TopOn K
20 ssidd J Comp F J Cn K ran F ran F
21 cnrest2 K TopOn K ran F ran F ran F K F J Cn K F J Cn K 𝑡 ran F
22 19 20 11 21 syl3anc J Comp F J Cn K F J Cn K F J Cn K 𝑡 ran F
23 17 22 mpbid J Comp F J Cn K F J Cn K 𝑡 ran F
24 eqid K 𝑡 ran F = K 𝑡 ran F
25 24 cncmp J Comp F : J onto K 𝑡 ran F F J Cn K 𝑡 ran F K 𝑡 ran F Comp
26 1 16 23 25 syl3anc J Comp F J Cn K K 𝑡 ran F Comp