| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lebnum.j |  | 
						
							| 2 |  | lebnum.d |  | 
						
							| 3 |  | lebnum.c |  | 
						
							| 4 |  | lebnum.s |  | 
						
							| 5 |  | lebnum.u |  | 
						
							| 6 |  | lebnumlem1.u |  | 
						
							| 7 |  | lebnumlem1.n |  | 
						
							| 8 |  | lebnumlem1.f |  | 
						
							| 9 | 6 | adantr |  | 
						
							| 10 | 2 | ad2antrr |  | 
						
							| 11 |  | difssd |  | 
						
							| 12 | 4 | adantr |  | 
						
							| 13 | 12 | sselda |  | 
						
							| 14 |  | elssuni |  | 
						
							| 15 | 13 14 | syl |  | 
						
							| 16 |  | metxmet |  | 
						
							| 17 | 2 16 | syl |  | 
						
							| 18 | 1 | mopnuni |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 | 19 | ad2antrr |  | 
						
							| 21 | 15 20 | sseqtrrd |  | 
						
							| 22 |  | eleq1 |  | 
						
							| 23 | 22 | notbid |  | 
						
							| 24 | 7 23 | syl5ibrcom |  | 
						
							| 25 | 24 | necon2ad |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 26 | imp |  | 
						
							| 28 |  | pssdifn0 |  | 
						
							| 29 | 21 27 28 | syl2anc |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 30 | metdsre |  | 
						
							| 32 | 10 11 29 31 | syl3anc |  | 
						
							| 33 | 30 | fmpt |  | 
						
							| 34 | 32 33 | sylibr |  | 
						
							| 35 |  | simplr |  | 
						
							| 36 |  | rsp |  | 
						
							| 37 | 34 35 36 | sylc |  | 
						
							| 38 | 9 37 | fsumrecl |  | 
						
							| 39 | 5 | eleq2d |  | 
						
							| 40 | 39 | biimpa |  | 
						
							| 41 |  | eluni2 |  | 
						
							| 42 | 40 41 | sylib |  | 
						
							| 43 |  | 0red |  | 
						
							| 44 |  | simplr |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 | 45 | metdsval |  | 
						
							| 47 | 44 46 | syl |  | 
						
							| 48 | 2 | ad2antrr |  | 
						
							| 49 |  | difssd |  | 
						
							| 50 | 4 | ad2antrr |  | 
						
							| 51 |  | simprl |  | 
						
							| 52 | 50 51 | sseldd |  | 
						
							| 53 |  | elssuni |  | 
						
							| 54 | 52 53 | syl |  | 
						
							| 55 | 48 16 18 | 3syl |  | 
						
							| 56 | 54 55 | sseqtrrd |  | 
						
							| 57 |  | eleq1 |  | 
						
							| 58 | 57 | notbid |  | 
						
							| 59 | 7 58 | syl5ibrcom |  | 
						
							| 60 | 59 | necon2ad |  | 
						
							| 61 | 60 | ad2antrr |  | 
						
							| 62 | 51 61 | mpd |  | 
						
							| 63 |  | pssdifn0 |  | 
						
							| 64 | 56 62 63 | syl2anc |  | 
						
							| 65 | 45 | metdsre |  | 
						
							| 66 | 48 49 64 65 | syl3anc |  | 
						
							| 67 | 66 44 | ffvelcdmd |  | 
						
							| 68 | 47 67 | eqeltrrd |  | 
						
							| 69 | 38 | adantr |  | 
						
							| 70 | 17 | ad2antrr |  | 
						
							| 71 | 45 | metdsf |  | 
						
							| 72 | 70 49 71 | syl2anc |  | 
						
							| 73 | 72 44 | ffvelcdmd |  | 
						
							| 74 |  | elxrge0 |  | 
						
							| 75 | 73 74 | sylib |  | 
						
							| 76 | 75 | simprd |  | 
						
							| 77 |  | elndif |  | 
						
							| 78 | 77 | ad2antll |  | 
						
							| 79 | 55 | difeq1d |  | 
						
							| 80 | 1 | mopntop |  | 
						
							| 81 | 70 80 | syl |  | 
						
							| 82 |  | eqid |  | 
						
							| 83 | 82 | opncld |  | 
						
							| 84 | 81 52 83 | syl2anc |  | 
						
							| 85 | 79 84 | eqeltrd |  | 
						
							| 86 |  | cldcls |  | 
						
							| 87 | 85 86 | syl |  | 
						
							| 88 | 78 87 | neleqtrrd |  | 
						
							| 89 | 45 1 | metdseq0 |  | 
						
							| 90 | 70 49 44 89 | syl3anc |  | 
						
							| 91 | 90 | necon3abid |  | 
						
							| 92 | 88 91 | mpbird |  | 
						
							| 93 | 67 76 92 | ne0gt0d |  | 
						
							| 94 | 93 47 | breqtrd |  | 
						
							| 95 | 6 | ad2antrr |  | 
						
							| 96 | 37 | adantlr |  | 
						
							| 97 | 17 | ad2antrr |  | 
						
							| 98 | 30 | metdsf |  | 
						
							| 99 | 97 11 98 | syl2anc |  | 
						
							| 100 | 30 | fmpt |  | 
						
							| 101 | 99 100 | sylibr |  | 
						
							| 102 |  | rsp |  | 
						
							| 103 | 101 35 102 | sylc |  | 
						
							| 104 |  | elxrge0 |  | 
						
							| 105 | 103 104 | sylib |  | 
						
							| 106 | 105 | simprd |  | 
						
							| 107 | 106 | adantlr |  | 
						
							| 108 |  | difeq2 |  | 
						
							| 109 | 108 | mpteq1d |  | 
						
							| 110 | 109 | rneqd |  | 
						
							| 111 | 110 | infeq1d |  | 
						
							| 112 | 95 96 107 111 51 | fsumge1 |  | 
						
							| 113 | 43 68 69 94 112 | ltletrd |  | 
						
							| 114 | 42 113 | rexlimddv |  | 
						
							| 115 | 38 114 | elrpd |  | 
						
							| 116 | 115 8 | fmptd |  |