| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lebnum.j |
|
| 2 |
|
lebnum.d |
|
| 3 |
|
lebnum.c |
|
| 4 |
|
lebnum.s |
|
| 5 |
|
lebnum.u |
|
| 6 |
|
lebnumlem1.u |
|
| 7 |
|
lebnumlem1.n |
|
| 8 |
|
lebnumlem1.f |
|
| 9 |
|
lebnumlem2.k |
|
| 10 |
|
eqid |
|
| 11 |
|
metxmet |
|
| 12 |
2 11
|
syl |
|
| 13 |
1
|
mopntopon |
|
| 14 |
12 13
|
syl |
|
| 15 |
2
|
adantr |
|
| 16 |
|
difssd |
|
| 17 |
12
|
adantr |
|
| 18 |
17 13
|
syl |
|
| 19 |
4
|
sselda |
|
| 20 |
|
toponss |
|
| 21 |
18 19 20
|
syl2anc |
|
| 22 |
|
eleq1 |
|
| 23 |
22
|
notbid |
|
| 24 |
7 23
|
syl5ibrcom |
|
| 25 |
24
|
necon2ad |
|
| 26 |
25
|
imp |
|
| 27 |
|
pssdifn0 |
|
| 28 |
21 26 27
|
syl2anc |
|
| 29 |
|
eqid |
|
| 30 |
29 1 10
|
metdscn2 |
|
| 31 |
15 16 28 30
|
syl3anc |
|
| 32 |
10 14 6 31
|
fsumcn |
|
| 33 |
8 32
|
eqeltrid |
|
| 34 |
10
|
cnfldtopon |
|
| 35 |
34
|
a1i |
|
| 36 |
1 2 3 4 5 6 7 8
|
lebnumlem1 |
|
| 37 |
36
|
frnd |
|
| 38 |
|
rpssre |
|
| 39 |
37 38
|
sstrdi |
|
| 40 |
|
ax-resscn |
|
| 41 |
40
|
a1i |
|
| 42 |
|
cnrest2 |
|
| 43 |
35 39 41 42
|
syl3anc |
|
| 44 |
33 43
|
mpbid |
|
| 45 |
|
tgioo4 |
|
| 46 |
9 45
|
eqtri |
|
| 47 |
46
|
oveq2i |
|
| 48 |
44 47
|
eleqtrrdi |
|