Metamath Proof Explorer


Theorem metdscn2

Description: The function F which gives the distance from a point to a nonempty set in a metric space is a continuous function into the topology of the complex numbers. (Contributed by Mario Carneiro, 5-Sep-2015)

Ref Expression
Hypotheses metdscn.f F=xXsupranySxDy*<
metdscn.j J=MetOpenD
metdscn2.k K=TopOpenfld
Assertion metdscn2 DMetXSXSFJCnK

Proof

Step Hyp Ref Expression
1 metdscn.f F=xXsupranySxDy*<
2 metdscn.j J=MetOpenD
3 metdscn2.k K=TopOpenfld
4 eqid dist𝑠*=dist𝑠*
5 4 xrsdsre dist𝑠*2=abs2
6 4 xrsxmet dist𝑠*∞Met*
7 ressxr *
8 eqid dist𝑠*2=dist𝑠*2
9 eqid MetOpendist𝑠*=MetOpendist𝑠*
10 eqid MetOpendist𝑠*2=MetOpendist𝑠*2
11 8 9 10 metrest dist𝑠*∞Met**MetOpendist𝑠*𝑡=MetOpendist𝑠*2
12 6 7 11 mp2an MetOpendist𝑠*𝑡=MetOpendist𝑠*2
13 5 12 tgioo topGenran.=MetOpendist𝑠*𝑡
14 3 tgioo2 topGenran.=K𝑡
15 13 14 eqtr3i MetOpendist𝑠*𝑡=K𝑡
16 15 oveq2i JCnMetOpendist𝑠*𝑡=JCnK𝑡
17 3 cnfldtop KTop
18 cnrest2r KTopJCnK𝑡JCnK
19 17 18 ax-mp JCnK𝑡JCnK
20 16 19 eqsstri JCnMetOpendist𝑠*𝑡JCnK
21 metxmet DMetXD∞MetX
22 1 2 4 9 metdscn D∞MetXSXFJCnMetOpendist𝑠*
23 21 22 sylan DMetXSXFJCnMetOpendist𝑠*
24 23 3adant3 DMetXSXSFJCnMetOpendist𝑠*
25 1 metdsre DMetXSXSF:X
26 frn F:XranF
27 9 mopntopon dist𝑠*∞Met*MetOpendist𝑠*TopOn*
28 6 27 ax-mp MetOpendist𝑠*TopOn*
29 cnrest2 MetOpendist𝑠*TopOn*ranF*FJCnMetOpendist𝑠*FJCnMetOpendist𝑠*𝑡
30 28 7 29 mp3an13 ranFFJCnMetOpendist𝑠*FJCnMetOpendist𝑠*𝑡
31 25 26 30 3syl DMetXSXSFJCnMetOpendist𝑠*FJCnMetOpendist𝑠*𝑡
32 24 31 mpbid DMetXSXSFJCnMetOpendist𝑠*𝑡
33 20 32 sselid DMetXSXSFJCnK