Metamath Proof Explorer


Theorem metnrmlem1a

Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypotheses metdscn.f F = x X sup ran y S x D y * <
metdscn.j J = MetOpen D
metnrmlem.1 φ D ∞Met X
metnrmlem.2 φ S Clsd J
metnrmlem.3 φ T Clsd J
metnrmlem.4 φ S T =
Assertion metnrmlem1a φ A T 0 < F A if 1 F A 1 F A +

Proof

Step Hyp Ref Expression
1 metdscn.f F = x X sup ran y S x D y * <
2 metdscn.j J = MetOpen D
3 metnrmlem.1 φ D ∞Met X
4 metnrmlem.2 φ S Clsd J
5 metnrmlem.3 φ T Clsd J
6 metnrmlem.4 φ S T =
7 6 adantr φ A T S T =
8 inelcm A S A T S T
9 8 expcom A T A S S T
10 9 adantl φ A T A S S T
11 10 necon2bd φ A T S T = ¬ A S
12 7 11 mpd φ A T ¬ A S
13 eqcom 0 = F A F A = 0
14 3 adantr φ A T D ∞Met X
15 4 adantr φ A T S Clsd J
16 eqid J = J
17 16 cldss S Clsd J S J
18 15 17 syl φ A T S J
19 2 mopnuni D ∞Met X X = J
20 14 19 syl φ A T X = J
21 18 20 sseqtrrd φ A T S X
22 5 adantr φ A T T Clsd J
23 16 cldss T Clsd J T J
24 22 23 syl φ A T T J
25 24 20 sseqtrrd φ A T T X
26 simpr φ A T A T
27 25 26 sseldd φ A T A X
28 1 2 metdseq0 D ∞Met X S X A X F A = 0 A cls J S
29 14 21 27 28 syl3anc φ A T F A = 0 A cls J S
30 13 29 syl5bb φ A T 0 = F A A cls J S
31 cldcls S Clsd J cls J S = S
32 15 31 syl φ A T cls J S = S
33 32 eleq2d φ A T A cls J S A S
34 30 33 bitrd φ A T 0 = F A A S
35 12 34 mtbird φ A T ¬ 0 = F A
36 1 metdsf D ∞Met X S X F : X 0 +∞
37 14 21 36 syl2anc φ A T F : X 0 +∞
38 37 27 ffvelrnd φ A T F A 0 +∞
39 elxrge0 F A 0 +∞ F A * 0 F A
40 39 simprbi F A 0 +∞ 0 F A
41 38 40 syl φ A T 0 F A
42 0xr 0 *
43 eliccxr F A 0 +∞ F A *
44 38 43 syl φ A T F A *
45 xrleloe 0 * F A * 0 F A 0 < F A 0 = F A
46 42 44 45 sylancr φ A T 0 F A 0 < F A 0 = F A
47 41 46 mpbid φ A T 0 < F A 0 = F A
48 47 ord φ A T ¬ 0 < F A 0 = F A
49 35 48 mt3d φ A T 0 < F A
50 1xr 1 *
51 ifcl 1 * F A * if 1 F A 1 F A *
52 50 44 51 sylancr φ A T if 1 F A 1 F A *
53 1red φ A T 1
54 0lt1 0 < 1
55 breq2 1 = if 1 F A 1 F A 0 < 1 0 < if 1 F A 1 F A
56 breq2 F A = if 1 F A 1 F A 0 < F A 0 < if 1 F A 1 F A
57 55 56 ifboth 0 < 1 0 < F A 0 < if 1 F A 1 F A
58 54 49 57 sylancr φ A T 0 < if 1 F A 1 F A
59 xrltle 0 * if 1 F A 1 F A * 0 < if 1 F A 1 F A 0 if 1 F A 1 F A
60 42 52 59 sylancr φ A T 0 < if 1 F A 1 F A 0 if 1 F A 1 F A
61 58 60 mpd φ A T 0 if 1 F A 1 F A
62 xrmin1 1 * F A * if 1 F A 1 F A 1
63 50 44 62 sylancr φ A T if 1 F A 1 F A 1
64 xrrege0 if 1 F A 1 F A * 1 0 if 1 F A 1 F A if 1 F A 1 F A 1 if 1 F A 1 F A
65 52 53 61 63 64 syl22anc φ A T if 1 F A 1 F A
66 65 58 elrpd φ A T if 1 F A 1 F A +
67 49 66 jca φ A T 0 < F A if 1 F A 1 F A +