Metamath Proof Explorer


Theorem metdsf

Description: The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 4-Sep-2015) (Proof shortened by AV, 30-Sep-2020)

Ref Expression
Hypothesis metdscn.f F = x X sup ran y S x D y * <
Assertion metdsf D ∞Met X S X F : X 0 +∞

Proof

Step Hyp Ref Expression
1 metdscn.f F = x X sup ran y S x D y * <
2 simplll D ∞Met X S X x X y S D ∞Met X
3 simplr D ∞Met X S X x X y S x X
4 simplr D ∞Met X S X x X S X
5 4 sselda D ∞Met X S X x X y S y X
6 xmetcl D ∞Met X x X y X x D y *
7 2 3 5 6 syl3anc D ∞Met X S X x X y S x D y *
8 eqid y S x D y = y S x D y
9 7 8 fmptd D ∞Met X S X x X y S x D y : S *
10 9 frnd D ∞Met X S X x X ran y S x D y *
11 infxrcl ran y S x D y * sup ran y S x D y * < *
12 10 11 syl D ∞Met X S X x X sup ran y S x D y * < *
13 xmetge0 D ∞Met X x X y X 0 x D y
14 2 3 5 13 syl3anc D ∞Met X S X x X y S 0 x D y
15 14 ralrimiva D ∞Met X S X x X y S 0 x D y
16 ovex x D y V
17 16 rgenw y S x D y V
18 breq2 z = x D y 0 z 0 x D y
19 8 18 ralrnmptw y S x D y V z ran y S x D y 0 z y S 0 x D y
20 17 19 ax-mp z ran y S x D y 0 z y S 0 x D y
21 15 20 sylibr D ∞Met X S X x X z ran y S x D y 0 z
22 0xr 0 *
23 infxrgelb ran y S x D y * 0 * 0 sup ran y S x D y * < z ran y S x D y 0 z
24 10 22 23 sylancl D ∞Met X S X x X 0 sup ran y S x D y * < z ran y S x D y 0 z
25 21 24 mpbird D ∞Met X S X x X 0 sup ran y S x D y * <
26 elxrge0 sup ran y S x D y * < 0 +∞ sup ran y S x D y * < * 0 sup ran y S x D y * <
27 12 25 26 sylanbrc D ∞Met X S X x X sup ran y S x D y * < 0 +∞
28 27 1 fmptd D ∞Met X S X F : X 0 +∞