Metamath Proof Explorer


Theorem ralrnmptw

Description: A restricted quantifier over an image set. Version of ralrnmpt with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 20-Aug-2015) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses ralrnmptw.1 F = x A B
ralrnmptw.2 y = B ψ χ
Assertion ralrnmptw x A B V y ran F ψ x A χ

Proof

Step Hyp Ref Expression
1 ralrnmptw.1 F = x A B
2 ralrnmptw.2 y = B ψ χ
3 1 fnmpt x A B V F Fn A
4 dfsbcq w = F z [˙w / y]˙ ψ [˙ F z / y]˙ ψ
5 4 ralrn F Fn A w ran F [˙w / y]˙ ψ z A [˙ F z / y]˙ ψ
6 3 5 syl x A B V w ran F [˙w / y]˙ ψ z A [˙ F z / y]˙ ψ
7 nfsbc1v y [˙w / y]˙ ψ
8 nfv w ψ
9 sbceq2a w = y [˙w / y]˙ ψ ψ
10 7 8 9 cbvralw w ran F [˙w / y]˙ ψ y ran F ψ
11 nfmpt1 _ x x A B
12 1 11 nfcxfr _ x F
13 nfcv _ x z
14 12 13 nffv _ x F z
15 nfv x ψ
16 14 15 nfsbcw x [˙ F z / y]˙ ψ
17 nfv z [˙ F x / y]˙ ψ
18 fveq2 z = x F z = F x
19 18 sbceq1d z = x [˙ F z / y]˙ ψ [˙ F x / y]˙ ψ
20 16 17 19 cbvralw z A [˙ F z / y]˙ ψ x A [˙ F x / y]˙ ψ
21 6 10 20 3bitr3g x A B V y ran F ψ x A [˙ F x / y]˙ ψ
22 1 fvmpt2 x A B V F x = B
23 22 sbceq1d x A B V [˙ F x / y]˙ ψ [˙B / y]˙ ψ
24 2 sbcieg B V [˙B / y]˙ ψ χ
25 24 adantl x A B V [˙B / y]˙ ψ χ
26 23 25 bitrd x A B V [˙ F x / y]˙ ψ χ
27 26 ralimiaa x A B V x A [˙ F x / y]˙ ψ χ
28 ralbi x A [˙ F x / y]˙ ψ χ x A [˙ F x / y]˙ ψ x A χ
29 27 28 syl x A B V x A [˙ F x / y]˙ ψ x A χ
30 21 29 bitrd x A B V y ran F ψ x A χ