Step |
Hyp |
Ref |
Expression |
1 |
|
ralrnmptw.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
2 |
|
ralrnmptw.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
1
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴 ) |
4 |
|
dfsbcq |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑧 ) → ( [ 𝑤 / 𝑦 ] 𝜓 ↔ [ ( 𝐹 ‘ 𝑧 ) / 𝑦 ] 𝜓 ) ) |
5 |
4
|
ralrn |
⊢ ( 𝐹 Fn 𝐴 → ( ∀ 𝑤 ∈ ran 𝐹 [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑧 ∈ 𝐴 [ ( 𝐹 ‘ 𝑧 ) / 𝑦 ] 𝜓 ) ) |
6 |
3 5
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ∀ 𝑤 ∈ ran 𝐹 [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑧 ∈ 𝐴 [ ( 𝐹 ‘ 𝑧 ) / 𝑦 ] 𝜓 ) ) |
7 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ 𝑤 / 𝑦 ] 𝜓 |
8 |
|
nfv |
⊢ Ⅎ 𝑤 𝜓 |
9 |
|
sbceq2a |
⊢ ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑦 ] 𝜓 ↔ 𝜓 ) ) |
10 |
7 8 9
|
cbvralw |
⊢ ( ∀ 𝑤 ∈ ran 𝐹 [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑦 ∈ ran 𝐹 𝜓 ) |
11 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
12 |
1 11
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
13 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
14 |
12 13
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) |
15 |
|
nfv |
⊢ Ⅎ 𝑥 𝜓 |
16 |
14 15
|
nfsbcw |
⊢ Ⅎ 𝑥 [ ( 𝐹 ‘ 𝑧 ) / 𝑦 ] 𝜓 |
17 |
|
nfv |
⊢ Ⅎ 𝑧 [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 |
18 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
19 |
18
|
sbceq1d |
⊢ ( 𝑧 = 𝑥 → ( [ ( 𝐹 ‘ 𝑧 ) / 𝑦 ] 𝜓 ↔ [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ) ) |
20 |
16 17 19
|
cbvralw |
⊢ ( ∀ 𝑧 ∈ 𝐴 [ ( 𝐹 ‘ 𝑧 ) / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ) |
21 |
6 10 20
|
3bitr3g |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ) ) |
22 |
1
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
23 |
22
|
sbceq1d |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ↔ [ 𝐵 / 𝑦 ] 𝜓 ) ) |
24 |
2
|
sbcieg |
⊢ ( 𝐵 ∈ 𝑉 → ( [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |
26 |
23 25
|
bitrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |
27 |
26
|
ralimiaa |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 ( [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |
28 |
|
ralbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ↔ 𝜒 ) → ( ∀ 𝑥 ∈ 𝐴 [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
29 |
27 28
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
30 |
21 29
|
bitrd |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |