Metamath Proof Explorer


Theorem ralrnmptw

Description: A restricted quantifier over an image set. Version of ralrnmpt with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 20-Aug-2015) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses ralrnmptw.1 𝐹 = ( 𝑥𝐴𝐵 )
ralrnmptw.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
Assertion ralrnmptw ( ∀ 𝑥𝐴 𝐵𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralrnmptw.1 𝐹 = ( 𝑥𝐴𝐵 )
2 ralrnmptw.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 1 fnmpt ( ∀ 𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴 )
4 dfsbcq ( 𝑤 = ( 𝐹𝑧 ) → ( [ 𝑤 / 𝑦 ] 𝜓[ ( 𝐹𝑧 ) / 𝑦 ] 𝜓 ) )
5 4 ralrn ( 𝐹 Fn 𝐴 → ( ∀ 𝑤 ∈ ran 𝐹 [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑧𝐴 [ ( 𝐹𝑧 ) / 𝑦 ] 𝜓 ) )
6 3 5 syl ( ∀ 𝑥𝐴 𝐵𝑉 → ( ∀ 𝑤 ∈ ran 𝐹 [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑧𝐴 [ ( 𝐹𝑧 ) / 𝑦 ] 𝜓 ) )
7 nfsbc1v 𝑦 [ 𝑤 / 𝑦 ] 𝜓
8 nfv 𝑤 𝜓
9 sbceq2a ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑦 ] 𝜓𝜓 ) )
10 7 8 9 cbvralw ( ∀ 𝑤 ∈ ran 𝐹 [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑦 ∈ ran 𝐹 𝜓 )
11 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
12 1 11 nfcxfr 𝑥 𝐹
13 nfcv 𝑥 𝑧
14 12 13 nffv 𝑥 ( 𝐹𝑧 )
15 nfv 𝑥 𝜓
16 14 15 nfsbcw 𝑥 [ ( 𝐹𝑧 ) / 𝑦 ] 𝜓
17 nfv 𝑧 [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓
18 fveq2 ( 𝑧 = 𝑥 → ( 𝐹𝑧 ) = ( 𝐹𝑥 ) )
19 18 sbceq1d ( 𝑧 = 𝑥 → ( [ ( 𝐹𝑧 ) / 𝑦 ] 𝜓[ ( 𝐹𝑥 ) / 𝑦 ] 𝜓 ) )
20 16 17 19 cbvralw ( ∀ 𝑧𝐴 [ ( 𝐹𝑧 ) / 𝑦 ] 𝜓 ↔ ∀ 𝑥𝐴 [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓 )
21 6 10 20 3bitr3g ( ∀ 𝑥𝐴 𝐵𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 𝜓 ↔ ∀ 𝑥𝐴 [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓 ) )
22 1 fvmpt2 ( ( 𝑥𝐴𝐵𝑉 ) → ( 𝐹𝑥 ) = 𝐵 )
23 22 sbceq1d ( ( 𝑥𝐴𝐵𝑉 ) → ( [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓[ 𝐵 / 𝑦 ] 𝜓 ) )
24 2 sbcieg ( 𝐵𝑉 → ( [ 𝐵 / 𝑦 ] 𝜓𝜒 ) )
25 24 adantl ( ( 𝑥𝐴𝐵𝑉 ) → ( [ 𝐵 / 𝑦 ] 𝜓𝜒 ) )
26 23 25 bitrd ( ( 𝑥𝐴𝐵𝑉 ) → ( [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓𝜒 ) )
27 26 ralimiaa ( ∀ 𝑥𝐴 𝐵𝑉 → ∀ 𝑥𝐴 ( [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓𝜒 ) )
28 ralbi ( ∀ 𝑥𝐴 ( [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓𝜒 ) → ( ∀ 𝑥𝐴 [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )
29 27 28 syl ( ∀ 𝑥𝐴 𝐵𝑉 → ( ∀ 𝑥𝐴 [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )
30 21 29 bitrd ( ∀ 𝑥𝐴 𝐵𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )