Step |
Hyp |
Ref |
Expression |
1 |
|
metdscn.f |
β’ πΉ = ( π₯ β π β¦ inf ( ran ( π¦ β π β¦ ( π₯ π· π¦ ) ) , β* , < ) ) |
2 |
|
metdscn.j |
β’ π½ = ( MetOpen β π· ) |
3 |
|
metdscn2.k |
β’ πΎ = ( TopOpen β βfld ) |
4 |
|
eqid |
β’ ( dist β β*π ) = ( dist β β*π ) |
5 |
4
|
xrsdsre |
β’ ( ( dist β β*π ) βΎ ( β Γ β ) ) = ( ( abs β β ) βΎ ( β Γ β ) ) |
6 |
4
|
xrsxmet |
β’ ( dist β β*π ) β ( βMet β β* ) |
7 |
|
ressxr |
β’ β β β* |
8 |
|
eqid |
β’ ( ( dist β β*π ) βΎ ( β Γ β ) ) = ( ( dist β β*π ) βΎ ( β Γ β ) ) |
9 |
|
eqid |
β’ ( MetOpen β ( dist β β*π ) ) = ( MetOpen β ( dist β β*π ) ) |
10 |
|
eqid |
β’ ( MetOpen β ( ( dist β β*π ) βΎ ( β Γ β ) ) ) = ( MetOpen β ( ( dist β β*π ) βΎ ( β Γ β ) ) ) |
11 |
8 9 10
|
metrest |
β’ ( ( ( dist β β*π ) β ( βMet β β* ) β§ β β β* ) β ( ( MetOpen β ( dist β β*π ) ) βΎt β ) = ( MetOpen β ( ( dist β β*π ) βΎ ( β Γ β ) ) ) ) |
12 |
6 7 11
|
mp2an |
β’ ( ( MetOpen β ( dist β β*π ) ) βΎt β ) = ( MetOpen β ( ( dist β β*π ) βΎ ( β Γ β ) ) ) |
13 |
5 12
|
tgioo |
β’ ( topGen β ran (,) ) = ( ( MetOpen β ( dist β β*π ) ) βΎt β ) |
14 |
3
|
tgioo2 |
β’ ( topGen β ran (,) ) = ( πΎ βΎt β ) |
15 |
13 14
|
eqtr3i |
β’ ( ( MetOpen β ( dist β β*π ) ) βΎt β ) = ( πΎ βΎt β ) |
16 |
15
|
oveq2i |
β’ ( π½ Cn ( ( MetOpen β ( dist β β*π ) ) βΎt β ) ) = ( π½ Cn ( πΎ βΎt β ) ) |
17 |
3
|
cnfldtop |
β’ πΎ β Top |
18 |
|
cnrest2r |
β’ ( πΎ β Top β ( π½ Cn ( πΎ βΎt β ) ) β ( π½ Cn πΎ ) ) |
19 |
17 18
|
ax-mp |
β’ ( π½ Cn ( πΎ βΎt β ) ) β ( π½ Cn πΎ ) |
20 |
16 19
|
eqsstri |
β’ ( π½ Cn ( ( MetOpen β ( dist β β*π ) ) βΎt β ) ) β ( π½ Cn πΎ ) |
21 |
|
metxmet |
β’ ( π· β ( Met β π ) β π· β ( βMet β π ) ) |
22 |
1 2 4 9
|
metdscn |
β’ ( ( π· β ( βMet β π ) β§ π β π ) β πΉ β ( π½ Cn ( MetOpen β ( dist β β*π ) ) ) ) |
23 |
21 22
|
sylan |
β’ ( ( π· β ( Met β π ) β§ π β π ) β πΉ β ( π½ Cn ( MetOpen β ( dist β β*π ) ) ) ) |
24 |
23
|
3adant3 |
β’ ( ( π· β ( Met β π ) β§ π β π β§ π β β
) β πΉ β ( π½ Cn ( MetOpen β ( dist β β*π ) ) ) ) |
25 |
1
|
metdsre |
β’ ( ( π· β ( Met β π ) β§ π β π β§ π β β
) β πΉ : π βΆ β ) |
26 |
|
frn |
β’ ( πΉ : π βΆ β β ran πΉ β β ) |
27 |
9
|
mopntopon |
β’ ( ( dist β β*π ) β ( βMet β β* ) β ( MetOpen β ( dist β β*π ) ) β ( TopOn β β* ) ) |
28 |
6 27
|
ax-mp |
β’ ( MetOpen β ( dist β β*π ) ) β ( TopOn β β* ) |
29 |
|
cnrest2 |
β’ ( ( ( MetOpen β ( dist β β*π ) ) β ( TopOn β β* ) β§ ran πΉ β β β§ β β β* ) β ( πΉ β ( π½ Cn ( MetOpen β ( dist β β*π ) ) ) β πΉ β ( π½ Cn ( ( MetOpen β ( dist β β*π ) ) βΎt β ) ) ) ) |
30 |
28 7 29
|
mp3an13 |
β’ ( ran πΉ β β β ( πΉ β ( π½ Cn ( MetOpen β ( dist β β*π ) ) ) β πΉ β ( π½ Cn ( ( MetOpen β ( dist β β*π ) ) βΎt β ) ) ) ) |
31 |
25 26 30
|
3syl |
β’ ( ( π· β ( Met β π ) β§ π β π β§ π β β
) β ( πΉ β ( π½ Cn ( MetOpen β ( dist β β*π ) ) ) β πΉ β ( π½ Cn ( ( MetOpen β ( dist β β*π ) ) βΎt β ) ) ) ) |
32 |
24 31
|
mpbid |
β’ ( ( π· β ( Met β π ) β§ π β π β§ π β β
) β πΉ β ( π½ Cn ( ( MetOpen β ( dist β β*π ) ) βΎt β ) ) ) |
33 |
20 32
|
sselid |
β’ ( ( π· β ( Met β π ) β§ π β π β§ π β β
) β πΉ β ( π½ Cn πΎ ) ) |