| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lebnum.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 |  | lebnum.d | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 3 |  | lebnum.c | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 4 |  | lebnum.s | ⊢ ( 𝜑  →  𝑈  ⊆  𝐽 ) | 
						
							| 5 |  | lebnum.u | ⊢ ( 𝜑  →  𝑋  =  ∪  𝑈 ) | 
						
							| 6 |  | lebnumlem1.u | ⊢ ( 𝜑  →  𝑈  ∈  Fin ) | 
						
							| 7 |  | lebnumlem1.n | ⊢ ( 𝜑  →  ¬  𝑋  ∈  𝑈 ) | 
						
							| 8 |  | lebnumlem1.f | ⊢ 𝐹  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑘  ∈  𝑈 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 9 |  | lebnumlem2.k | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 10 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 11 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 12 | 2 11 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 13 | 1 | mopntopon | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 15 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑈 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 16 |  | difssd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑈 )  →  ( 𝑋  ∖  𝑘 )  ⊆  𝑋 ) | 
						
							| 17 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑈 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 18 | 17 13 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑈 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 19 | 4 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑈 )  →  𝑘  ∈  𝐽 ) | 
						
							| 20 |  | toponss | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑘  ∈  𝐽 )  →  𝑘  ⊆  𝑋 ) | 
						
							| 21 | 18 19 20 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑈 )  →  𝑘  ⊆  𝑋 ) | 
						
							| 22 |  | eleq1 | ⊢ ( 𝑘  =  𝑋  →  ( 𝑘  ∈  𝑈  ↔  𝑋  ∈  𝑈 ) ) | 
						
							| 23 | 22 | notbid | ⊢ ( 𝑘  =  𝑋  →  ( ¬  𝑘  ∈  𝑈  ↔  ¬  𝑋  ∈  𝑈 ) ) | 
						
							| 24 | 7 23 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑘  =  𝑋  →  ¬  𝑘  ∈  𝑈 ) ) | 
						
							| 25 | 24 | necon2ad | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑈  →  𝑘  ≠  𝑋 ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑈 )  →  𝑘  ≠  𝑋 ) | 
						
							| 27 |  | pssdifn0 | ⊢ ( ( 𝑘  ⊆  𝑋  ∧  𝑘  ≠  𝑋 )  →  ( 𝑋  ∖  𝑘 )  ≠  ∅ ) | 
						
							| 28 | 21 26 27 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑈 )  →  ( 𝑋  ∖  𝑘 )  ≠  ∅ ) | 
						
							| 29 |  | eqid | ⊢ ( 𝑦  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑦  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 30 | 29 1 10 | metdscn2 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝑋  ∖  𝑘 )  ⊆  𝑋  ∧  ( 𝑋  ∖  𝑘 )  ≠  ∅ )  →  ( 𝑦  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 31 | 15 16 28 30 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑈 )  →  ( 𝑦  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 32 | 10 14 6 31 | fsumcn | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑋  ↦  Σ 𝑘  ∈  𝑈 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) )  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 33 | 8 32 | eqeltrid | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 34 | 10 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 35 | 34 | a1i | ⊢ ( 𝜑  →  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 36 | 1 2 3 4 5 6 7 8 | lebnumlem1 | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ℝ+ ) | 
						
							| 37 | 36 | frnd | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ℝ+ ) | 
						
							| 38 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 39 | 37 38 | sstrdi | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 40 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 41 | 40 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 42 |  | cnrest2 | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  ran  𝐹  ⊆  ℝ  ∧  ℝ  ⊆  ℂ )  →  ( 𝐹  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) )  ↔  𝐹  ∈  ( 𝐽  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) ) ) | 
						
							| 43 | 35 39 41 42 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝐽  Cn  ( TopOpen ‘ ℂfld ) )  ↔  𝐹  ∈  ( 𝐽  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) ) ) | 
						
							| 44 | 33 43 | mpbid | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) ) | 
						
							| 45 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 46 | 9 45 | eqtri | ⊢ 𝐾  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 47 | 46 | oveq2i | ⊢ ( 𝐽  Cn  𝐾 )  =  ( 𝐽  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 48 | 44 47 | eleqtrrdi | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) |