| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lebnum.j |  |-  J = ( MetOpen ` D ) | 
						
							| 2 |  | lebnum.d |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 3 |  | lebnum.c |  |-  ( ph -> J e. Comp ) | 
						
							| 4 |  | lebnum.s |  |-  ( ph -> U C_ J ) | 
						
							| 5 |  | lebnum.u |  |-  ( ph -> X = U. U ) | 
						
							| 6 |  | lebnumlem1.u |  |-  ( ph -> U e. Fin ) | 
						
							| 7 |  | lebnumlem1.n |  |-  ( ph -> -. X e. U ) | 
						
							| 8 |  | lebnumlem1.f |  |-  F = ( y e. X |-> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) | 
						
							| 9 |  | lebnumlem2.k |  |-  K = ( topGen ` ran (,) ) | 
						
							| 10 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 11 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 12 | 2 11 | syl |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 13 | 1 | mopntopon |  |-  ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 15 | 2 | adantr |  |-  ( ( ph /\ k e. U ) -> D e. ( Met ` X ) ) | 
						
							| 16 |  | difssd |  |-  ( ( ph /\ k e. U ) -> ( X \ k ) C_ X ) | 
						
							| 17 | 12 | adantr |  |-  ( ( ph /\ k e. U ) -> D e. ( *Met ` X ) ) | 
						
							| 18 | 17 13 | syl |  |-  ( ( ph /\ k e. U ) -> J e. ( TopOn ` X ) ) | 
						
							| 19 | 4 | sselda |  |-  ( ( ph /\ k e. U ) -> k e. J ) | 
						
							| 20 |  | toponss |  |-  ( ( J e. ( TopOn ` X ) /\ k e. J ) -> k C_ X ) | 
						
							| 21 | 18 19 20 | syl2anc |  |-  ( ( ph /\ k e. U ) -> k C_ X ) | 
						
							| 22 |  | eleq1 |  |-  ( k = X -> ( k e. U <-> X e. U ) ) | 
						
							| 23 | 22 | notbid |  |-  ( k = X -> ( -. k e. U <-> -. X e. U ) ) | 
						
							| 24 | 7 23 | syl5ibrcom |  |-  ( ph -> ( k = X -> -. k e. U ) ) | 
						
							| 25 | 24 | necon2ad |  |-  ( ph -> ( k e. U -> k =/= X ) ) | 
						
							| 26 | 25 | imp |  |-  ( ( ph /\ k e. U ) -> k =/= X ) | 
						
							| 27 |  | pssdifn0 |  |-  ( ( k C_ X /\ k =/= X ) -> ( X \ k ) =/= (/) ) | 
						
							| 28 | 21 26 27 | syl2anc |  |-  ( ( ph /\ k e. U ) -> ( X \ k ) =/= (/) ) | 
						
							| 29 |  | eqid |  |-  ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) = ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) | 
						
							| 30 | 29 1 10 | metdscn2 |  |-  ( ( D e. ( Met ` X ) /\ ( X \ k ) C_ X /\ ( X \ k ) =/= (/) ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 31 | 15 16 28 30 | syl3anc |  |-  ( ( ph /\ k e. U ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 32 | 10 14 6 31 | fsumcn |  |-  ( ph -> ( y e. X |-> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 33 | 8 32 | eqeltrid |  |-  ( ph -> F e. ( J Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 34 | 10 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 35 | 34 | a1i |  |-  ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 36 | 1 2 3 4 5 6 7 8 | lebnumlem1 |  |-  ( ph -> F : X --> RR+ ) | 
						
							| 37 | 36 | frnd |  |-  ( ph -> ran F C_ RR+ ) | 
						
							| 38 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 39 | 37 38 | sstrdi |  |-  ( ph -> ran F C_ RR ) | 
						
							| 40 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 41 | 40 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 42 |  | cnrest2 |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran F C_ RR /\ RR C_ CC ) -> ( F e. ( J Cn ( TopOpen ` CCfld ) ) <-> F e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) | 
						
							| 43 | 35 39 41 42 | syl3anc |  |-  ( ph -> ( F e. ( J Cn ( TopOpen ` CCfld ) ) <-> F e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) | 
						
							| 44 | 33 43 | mpbid |  |-  ( ph -> F e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) | 
						
							| 45 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 46 | 9 45 | eqtri |  |-  K = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 47 | 46 | oveq2i |  |-  ( J Cn K ) = ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 48 | 44 47 | eleqtrrdi |  |-  ( ph -> F e. ( J Cn K ) ) |