| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lebnum.j |  |-  J = ( MetOpen ` D ) | 
						
							| 2 |  | lebnum.d |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 3 |  | lebnum.c |  |-  ( ph -> J e. Comp ) | 
						
							| 4 |  | lebnum.s |  |-  ( ph -> U C_ J ) | 
						
							| 5 |  | lebnum.u |  |-  ( ph -> X = U. U ) | 
						
							| 6 |  | lebnumlem1.u |  |-  ( ph -> U e. Fin ) | 
						
							| 7 |  | lebnumlem1.n |  |-  ( ph -> -. X e. U ) | 
						
							| 8 |  | lebnumlem1.f |  |-  F = ( y e. X |-> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) | 
						
							| 9 |  | lebnumlem2.k |  |-  K = ( topGen ` ran (,) ) | 
						
							| 10 |  | 1rp |  |-  1 e. RR+ | 
						
							| 11 | 10 | ne0ii |  |-  RR+ =/= (/) | 
						
							| 12 |  | ral0 |  |-  A. x e. (/) E. u e. U ( x ( ball ` D ) d ) C_ u | 
						
							| 13 |  | simpr |  |-  ( ( ph /\ X = (/) ) -> X = (/) ) | 
						
							| 14 | 13 | raleqdv |  |-  ( ( ph /\ X = (/) ) -> ( A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u <-> A. x e. (/) E. u e. U ( x ( ball ` D ) d ) C_ u ) ) | 
						
							| 15 | 12 14 | mpbiri |  |-  ( ( ph /\ X = (/) ) -> A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) | 
						
							| 16 | 15 | ralrimivw |  |-  ( ( ph /\ X = (/) ) -> A. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) | 
						
							| 17 |  | r19.2z |  |-  ( ( RR+ =/= (/) /\ A. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) | 
						
							| 18 | 11 16 17 | sylancr |  |-  ( ( ph /\ X = (/) ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 | lebnumlem1 |  |-  ( ph -> F : X --> RR+ ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> F : X --> RR+ ) | 
						
							| 21 | 20 | frnd |  |-  ( ( ph /\ X =/= (/) ) -> ran F C_ RR+ ) | 
						
							| 22 |  | eqid |  |-  U. J = U. J | 
						
							| 23 | 3 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> J e. Comp ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 | lebnumlem2 |  |-  ( ph -> F e. ( J Cn K ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> F e. ( J Cn K ) ) | 
						
							| 26 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 27 | 1 | mopnuni |  |-  ( D e. ( *Met ` X ) -> X = U. J ) | 
						
							| 28 | 2 26 27 | 3syl |  |-  ( ph -> X = U. J ) | 
						
							| 29 | 28 | neeq1d |  |-  ( ph -> ( X =/= (/) <-> U. J =/= (/) ) ) | 
						
							| 30 | 29 | biimpa |  |-  ( ( ph /\ X =/= (/) ) -> U. J =/= (/) ) | 
						
							| 31 | 22 9 23 25 30 | evth2 |  |-  ( ( ph /\ X =/= (/) ) -> E. w e. U. J A. x e. U. J ( F ` w ) <_ ( F ` x ) ) | 
						
							| 32 | 28 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> X = U. J ) | 
						
							| 33 |  | raleq |  |-  ( X = U. J -> ( A. x e. X ( F ` w ) <_ ( F ` x ) <-> A. x e. U. J ( F ` w ) <_ ( F ` x ) ) ) | 
						
							| 34 | 33 | rexeqbi1dv |  |-  ( X = U. J -> ( E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) <-> E. w e. U. J A. x e. U. J ( F ` w ) <_ ( F ` x ) ) ) | 
						
							| 35 | 32 34 | syl |  |-  ( ( ph /\ X =/= (/) ) -> ( E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) <-> E. w e. U. J A. x e. U. J ( F ` w ) <_ ( F ` x ) ) ) | 
						
							| 36 | 31 35 | mpbird |  |-  ( ( ph /\ X =/= (/) ) -> E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) ) | 
						
							| 37 |  | ffn |  |-  ( F : X --> RR+ -> F Fn X ) | 
						
							| 38 |  | breq1 |  |-  ( r = ( F ` w ) -> ( r <_ ( F ` x ) <-> ( F ` w ) <_ ( F ` x ) ) ) | 
						
							| 39 | 38 | ralbidv |  |-  ( r = ( F ` w ) -> ( A. x e. X r <_ ( F ` x ) <-> A. x e. X ( F ` w ) <_ ( F ` x ) ) ) | 
						
							| 40 | 39 | rexrn |  |-  ( F Fn X -> ( E. r e. ran F A. x e. X r <_ ( F ` x ) <-> E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) ) ) | 
						
							| 41 | 20 37 40 | 3syl |  |-  ( ( ph /\ X =/= (/) ) -> ( E. r e. ran F A. x e. X r <_ ( F ` x ) <-> E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) ) ) | 
						
							| 42 | 36 41 | mpbird |  |-  ( ( ph /\ X =/= (/) ) -> E. r e. ran F A. x e. X r <_ ( F ` x ) ) | 
						
							| 43 |  | ssrexv |  |-  ( ran F C_ RR+ -> ( E. r e. ran F A. x e. X r <_ ( F ` x ) -> E. r e. RR+ A. x e. X r <_ ( F ` x ) ) ) | 
						
							| 44 | 21 42 43 | sylc |  |-  ( ( ph /\ X =/= (/) ) -> E. r e. RR+ A. x e. X r <_ ( F ` x ) ) | 
						
							| 45 |  | simpr |  |-  ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> r e. RR+ ) | 
						
							| 46 | 5 | ad2antrr |  |-  ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> X = U. U ) | 
						
							| 47 |  | simplr |  |-  ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> X =/= (/) ) | 
						
							| 48 | 46 47 | eqnetrrd |  |-  ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> U. U =/= (/) ) | 
						
							| 49 |  | unieq |  |-  ( U = (/) -> U. U = U. (/) ) | 
						
							| 50 |  | uni0 |  |-  U. (/) = (/) | 
						
							| 51 | 49 50 | eqtrdi |  |-  ( U = (/) -> U. U = (/) ) | 
						
							| 52 | 51 | necon3i |  |-  ( U. U =/= (/) -> U =/= (/) ) | 
						
							| 53 | 48 52 | syl |  |-  ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> U =/= (/) ) | 
						
							| 54 | 6 | ad2antrr |  |-  ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> U e. Fin ) | 
						
							| 55 |  | hashnncl |  |-  ( U e. Fin -> ( ( # ` U ) e. NN <-> U =/= (/) ) ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( ( # ` U ) e. NN <-> U =/= (/) ) ) | 
						
							| 57 | 53 56 | mpbird |  |-  ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( # ` U ) e. NN ) | 
						
							| 58 | 57 | nnrpd |  |-  ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( # ` U ) e. RR+ ) | 
						
							| 59 | 45 58 | rpdivcld |  |-  ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( r / ( # ` U ) ) e. RR+ ) | 
						
							| 60 |  | ralnex |  |-  ( A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u <-> -. E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) | 
						
							| 61 | 54 | adantr |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> U e. Fin ) | 
						
							| 62 | 53 | adantr |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> U =/= (/) ) | 
						
							| 63 |  | simprl |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> x e. X ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> x e. X ) | 
						
							| 65 |  | eqid |  |-  ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) = ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) | 
						
							| 66 | 65 | metdsval |  |-  ( x e. X -> ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) = inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) | 
						
							| 67 | 64 66 | syl |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) = inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) | 
						
							| 68 | 2 | ad2antrr |  |-  ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> D e. ( Met ` X ) ) | 
						
							| 69 | 68 | ad2antrr |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> D e. ( Met ` X ) ) | 
						
							| 70 |  | difssd |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( X \ k ) C_ X ) | 
						
							| 71 |  | elssuni |  |-  ( k e. U -> k C_ U. U ) | 
						
							| 72 | 71 | adantl |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> k C_ U. U ) | 
						
							| 73 | 46 | ad2antrr |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> X = U. U ) | 
						
							| 74 | 72 73 | sseqtrrd |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> k C_ X ) | 
						
							| 75 |  | eleq1 |  |-  ( k = X -> ( k e. U <-> X e. U ) ) | 
						
							| 76 | 75 | notbid |  |-  ( k = X -> ( -. k e. U <-> -. X e. U ) ) | 
						
							| 77 | 7 76 | syl5ibrcom |  |-  ( ph -> ( k = X -> -. k e. U ) ) | 
						
							| 78 | 77 | necon2ad |  |-  ( ph -> ( k e. U -> k =/= X ) ) | 
						
							| 79 | 78 | ad3antrrr |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( k e. U -> k =/= X ) ) | 
						
							| 80 | 79 | imp |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> k =/= X ) | 
						
							| 81 |  | pssdifn0 |  |-  ( ( k C_ X /\ k =/= X ) -> ( X \ k ) =/= (/) ) | 
						
							| 82 | 74 80 81 | syl2anc |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( X \ k ) =/= (/) ) | 
						
							| 83 | 65 | metdsre |  |-  ( ( D e. ( Met ` X ) /\ ( X \ k ) C_ X /\ ( X \ k ) =/= (/) ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) : X --> RR ) | 
						
							| 84 | 69 70 82 83 | syl3anc |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) : X --> RR ) | 
						
							| 85 | 84 64 | ffvelcdmd |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) e. RR ) | 
						
							| 86 | 67 85 | eqeltrrd |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) e. RR ) | 
						
							| 87 | 59 | ad2antrr |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( r / ( # ` U ) ) e. RR+ ) | 
						
							| 88 | 87 | rpred |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( r / ( # ` U ) ) e. RR ) | 
						
							| 89 |  | simprr |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) | 
						
							| 90 |  | sseq2 |  |-  ( u = k -> ( ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u <-> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) | 
						
							| 91 | 90 | notbid |  |-  ( u = k -> ( -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u <-> -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) | 
						
							| 92 | 91 | rspccva |  |-  ( ( A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u /\ k e. U ) -> -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) | 
						
							| 93 | 89 92 | sylan |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) | 
						
							| 94 | 69 26 | syl |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> D e. ( *Met ` X ) ) | 
						
							| 95 | 87 | rpxrd |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( r / ( # ` U ) ) e. RR* ) | 
						
							| 96 | 65 | metdsge |  |-  ( ( ( D e. ( *Met ` X ) /\ ( X \ k ) C_ X /\ x e. X ) /\ ( r / ( # ` U ) ) e. RR* ) -> ( ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) <-> ( ( X \ k ) i^i ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) = (/) ) ) | 
						
							| 97 | 94 70 64 95 96 | syl31anc |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) <-> ( ( X \ k ) i^i ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) = (/) ) ) | 
						
							| 98 |  | blssm |  |-  ( ( D e. ( *Met ` X ) /\ x e. X /\ ( r / ( # ` U ) ) e. RR* ) -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ X ) | 
						
							| 99 | 94 64 95 98 | syl3anc |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ X ) | 
						
							| 100 |  | difin0ss |  |-  ( ( ( X \ k ) i^i ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) = (/) -> ( ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ X -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) | 
						
							| 101 | 99 100 | syl5com |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( ( X \ k ) i^i ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) = (/) -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) | 
						
							| 102 | 97 101 | sylbid |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) | 
						
							| 103 | 93 102 | mtod |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> -. ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) ) | 
						
							| 104 | 85 88 | ltnled |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) < ( r / ( # ` U ) ) <-> -. ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) ) ) | 
						
							| 105 | 103 104 | mpbird |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) < ( r / ( # ` U ) ) ) | 
						
							| 106 | 67 105 | eqbrtrrd |  |-  ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) < ( r / ( # ` U ) ) ) | 
						
							| 107 | 61 62 86 88 106 | fsumlt |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) < sum_ k e. U ( r / ( # ` U ) ) ) | 
						
							| 108 |  | oveq1 |  |-  ( y = x -> ( y D z ) = ( x D z ) ) | 
						
							| 109 | 108 | mpteq2dv |  |-  ( y = x -> ( z e. ( X \ k ) |-> ( y D z ) ) = ( z e. ( X \ k ) |-> ( x D z ) ) ) | 
						
							| 110 | 109 | rneqd |  |-  ( y = x -> ran ( z e. ( X \ k ) |-> ( y D z ) ) = ran ( z e. ( X \ k ) |-> ( x D z ) ) ) | 
						
							| 111 | 110 | infeq1d |  |-  ( y = x -> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) = inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) | 
						
							| 112 | 111 | sumeq2sdv |  |-  ( y = x -> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) = sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) | 
						
							| 113 |  | sumex |  |-  sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) e. _V | 
						
							| 114 | 112 8 113 | fvmpt |  |-  ( x e. X -> ( F ` x ) = sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) | 
						
							| 115 | 63 114 | syl |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( F ` x ) = sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) | 
						
							| 116 | 59 | adantr |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( r / ( # ` U ) ) e. RR+ ) | 
						
							| 117 | 116 | rpcnd |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( r / ( # ` U ) ) e. CC ) | 
						
							| 118 |  | fsumconst |  |-  ( ( U e. Fin /\ ( r / ( # ` U ) ) e. CC ) -> sum_ k e. U ( r / ( # ` U ) ) = ( ( # ` U ) x. ( r / ( # ` U ) ) ) ) | 
						
							| 119 | 61 117 118 | syl2anc |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> sum_ k e. U ( r / ( # ` U ) ) = ( ( # ` U ) x. ( r / ( # ` U ) ) ) ) | 
						
							| 120 |  | simplr |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> r e. RR+ ) | 
						
							| 121 | 120 | rpcnd |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> r e. CC ) | 
						
							| 122 | 57 | adantr |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( # ` U ) e. NN ) | 
						
							| 123 | 122 | nncnd |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( # ` U ) e. CC ) | 
						
							| 124 | 122 | nnne0d |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( # ` U ) =/= 0 ) | 
						
							| 125 | 121 123 124 | divcan2d |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( ( # ` U ) x. ( r / ( # ` U ) ) ) = r ) | 
						
							| 126 | 119 125 | eqtr2d |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> r = sum_ k e. U ( r / ( # ` U ) ) ) | 
						
							| 127 | 107 115 126 | 3brtr4d |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( F ` x ) < r ) | 
						
							| 128 | 20 | ad2antrr |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> F : X --> RR+ ) | 
						
							| 129 | 128 63 | ffvelcdmd |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( F ` x ) e. RR+ ) | 
						
							| 130 | 129 | rpred |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( F ` x ) e. RR ) | 
						
							| 131 | 120 | rpred |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> r e. RR ) | 
						
							| 132 | 130 131 | ltnled |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( ( F ` x ) < r <-> -. r <_ ( F ` x ) ) ) | 
						
							| 133 | 127 132 | mpbid |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> -. r <_ ( F ` x ) ) | 
						
							| 134 | 133 | expr |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ x e. X ) -> ( A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u -> -. r <_ ( F ` x ) ) ) | 
						
							| 135 | 60 134 | biimtrrid |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ x e. X ) -> ( -. E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u -> -. r <_ ( F ` x ) ) ) | 
						
							| 136 | 135 | con4d |  |-  ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ x e. X ) -> ( r <_ ( F ` x ) -> E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) | 
						
							| 137 | 136 | ralimdva |  |-  ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( A. x e. X r <_ ( F ` x ) -> A. x e. X E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) | 
						
							| 138 |  | oveq2 |  |-  ( d = ( r / ( # ` U ) ) -> ( x ( ball ` D ) d ) = ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) | 
						
							| 139 | 138 | sseq1d |  |-  ( d = ( r / ( # ` U ) ) -> ( ( x ( ball ` D ) d ) C_ u <-> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) | 
						
							| 140 | 139 | rexbidv |  |-  ( d = ( r / ( # ` U ) ) -> ( E. u e. U ( x ( ball ` D ) d ) C_ u <-> E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) | 
						
							| 141 | 140 | ralbidv |  |-  ( d = ( r / ( # ` U ) ) -> ( A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u <-> A. x e. X E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) | 
						
							| 142 | 141 | rspcev |  |-  ( ( ( r / ( # ` U ) ) e. RR+ /\ A. x e. X E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) | 
						
							| 143 | 59 137 142 | syl6an |  |-  ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( A. x e. X r <_ ( F ` x ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) ) | 
						
							| 144 | 143 | rexlimdva |  |-  ( ( ph /\ X =/= (/) ) -> ( E. r e. RR+ A. x e. X r <_ ( F ` x ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) ) | 
						
							| 145 | 44 144 | mpd |  |-  ( ( ph /\ X =/= (/) ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) | 
						
							| 146 | 18 145 | pm2.61dane |  |-  ( ph -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |