| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lebnum.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
|
lebnum.d |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 3 |
|
lebnum.c |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| 4 |
|
lebnum.s |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) |
| 5 |
|
lebnum.u |
⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) |
| 6 |
|
lebnumlem1.u |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
| 7 |
|
lebnumlem1.n |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) |
| 8 |
|
lebnumlem1.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 9 |
|
lebnumlem2.k |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
| 10 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 11 |
10
|
ne0ii |
⊢ ℝ+ ≠ ∅ |
| 12 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝑋 = ∅ ) |
| 14 |
13
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ∀ 𝑥 ∈ ∅ ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 15 |
12 14
|
mpbiri |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 16 |
15
|
ralrimivw |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∀ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 17 |
|
r19.2z |
⊢ ( ( ℝ+ ≠ ∅ ∧ ∀ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 18 |
11 16 17
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 19 |
1 2 3 4 5 6 7 8
|
lebnumlem1 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ+ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝐹 : 𝑋 ⟶ ℝ+ ) |
| 21 |
20
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ran 𝐹 ⊆ ℝ+ ) |
| 22 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 23 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝐽 ∈ Comp ) |
| 24 |
1 2 3 4 5 6 7 8 9
|
lebnumlem2 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 26 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 27 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 28 |
2 26 27
|
3syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 29 |
28
|
neeq1d |
⊢ ( 𝜑 → ( 𝑋 ≠ ∅ ↔ ∪ 𝐽 ≠ ∅ ) ) |
| 30 |
29
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∪ 𝐽 ≠ ∅ ) |
| 31 |
22 9 23 25 30
|
evth2 |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∃ 𝑤 ∈ ∪ 𝐽 ∀ 𝑥 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 32 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝑋 = ∪ 𝐽 ) |
| 33 |
|
raleq |
⊢ ( 𝑋 = ∪ 𝐽 → ( ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 34 |
33
|
rexeqbi1dv |
⊢ ( 𝑋 = ∪ 𝐽 → ( ∃ 𝑤 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑤 ∈ ∪ 𝐽 ∀ 𝑥 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 35 |
32 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑤 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑤 ∈ ∪ 𝐽 ∀ 𝑥 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 36 |
31 35
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 37 |
|
ffn |
⊢ ( 𝐹 : 𝑋 ⟶ ℝ+ → 𝐹 Fn 𝑋 ) |
| 38 |
|
breq1 |
⊢ ( 𝑟 = ( 𝐹 ‘ 𝑤 ) → ( 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 39 |
38
|
ralbidv |
⊢ ( 𝑟 = ( 𝐹 ‘ 𝑤 ) → ( ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 40 |
39
|
rexrn |
⊢ ( 𝐹 Fn 𝑋 → ( ∃ 𝑟 ∈ ran 𝐹 ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑤 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 41 |
20 37 40
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑟 ∈ ran 𝐹 ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑤 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 42 |
36 41
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∃ 𝑟 ∈ ran 𝐹 ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 43 |
|
ssrexv |
⊢ ( ran 𝐹 ⊆ ℝ+ → ( ∃ 𝑟 ∈ ran 𝐹 ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) → ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 44 |
21 42 43
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 45 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) |
| 46 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑋 = ∪ 𝑈 ) |
| 47 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑋 ≠ ∅ ) |
| 48 |
46 47
|
eqnetrrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ∪ 𝑈 ≠ ∅ ) |
| 49 |
|
unieq |
⊢ ( 𝑈 = ∅ → ∪ 𝑈 = ∪ ∅ ) |
| 50 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 51 |
49 50
|
eqtrdi |
⊢ ( 𝑈 = ∅ → ∪ 𝑈 = ∅ ) |
| 52 |
51
|
necon3i |
⊢ ( ∪ 𝑈 ≠ ∅ → 𝑈 ≠ ∅ ) |
| 53 |
48 52
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑈 ≠ ∅ ) |
| 54 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑈 ∈ Fin ) |
| 55 |
|
hashnncl |
⊢ ( 𝑈 ∈ Fin → ( ( ♯ ‘ 𝑈 ) ∈ ℕ ↔ 𝑈 ≠ ∅ ) ) |
| 56 |
54 55
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( ( ♯ ‘ 𝑈 ) ∈ ℕ ↔ 𝑈 ≠ ∅ ) ) |
| 57 |
53 56
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( ♯ ‘ 𝑈 ) ∈ ℕ ) |
| 58 |
57
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( ♯ ‘ 𝑈 ) ∈ ℝ+ ) |
| 59 |
45 58
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ+ ) |
| 60 |
|
ralnex |
⊢ ( ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ↔ ¬ ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) |
| 61 |
54
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝑈 ∈ Fin ) |
| 62 |
53
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝑈 ≠ ∅ ) |
| 63 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝑥 ∈ 𝑋 ) |
| 64 |
63
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → 𝑥 ∈ 𝑋 ) |
| 65 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) = ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 66 |
65
|
metdsval |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) = inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 67 |
64 66
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) = inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 68 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 69 |
68
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 70 |
|
difssd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ) |
| 71 |
|
elssuni |
⊢ ( 𝑘 ∈ 𝑈 → 𝑘 ⊆ ∪ 𝑈 ) |
| 72 |
71
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ⊆ ∪ 𝑈 ) |
| 73 |
46
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → 𝑋 = ∪ 𝑈 ) |
| 74 |
72 73
|
sseqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ⊆ 𝑋 ) |
| 75 |
|
eleq1 |
⊢ ( 𝑘 = 𝑋 → ( 𝑘 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈 ) ) |
| 76 |
75
|
notbid |
⊢ ( 𝑘 = 𝑋 → ( ¬ 𝑘 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈 ) ) |
| 77 |
7 76
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑘 = 𝑋 → ¬ 𝑘 ∈ 𝑈 ) ) |
| 78 |
77
|
necon2ad |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋 ) ) |
| 79 |
78
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( 𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋 ) ) |
| 80 |
79
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ≠ 𝑋 ) |
| 81 |
|
pssdifn0 |
⊢ ( ( 𝑘 ⊆ 𝑋 ∧ 𝑘 ≠ 𝑋 ) → ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) |
| 82 |
74 80 81
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) |
| 83 |
65
|
metdsre |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ ) |
| 84 |
69 70 82 83
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ ) |
| 85 |
84 64
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) ∈ ℝ ) |
| 86 |
67 85
|
eqeltrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) |
| 87 |
59
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ+ ) |
| 88 |
87
|
rpred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ ) |
| 89 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) |
| 90 |
|
sseq2 |
⊢ ( 𝑢 = 𝑘 → ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ↔ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑘 ) ) |
| 91 |
90
|
notbid |
⊢ ( 𝑢 = 𝑘 → ( ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ↔ ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑘 ) ) |
| 92 |
91
|
rspccva |
⊢ ( ( ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ∧ 𝑘 ∈ 𝑈 ) → ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑘 ) |
| 93 |
89 92
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑘 ) |
| 94 |
69 26
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 95 |
87
|
rpxrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ* ) |
| 96 |
65
|
metdsge |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ* ) → ( ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ≤ ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) ↔ ( ( 𝑋 ∖ 𝑘 ) ∩ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ) = ∅ ) ) |
| 97 |
94 70 64 95 96
|
syl31anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ≤ ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) ↔ ( ( 𝑋 ∖ 𝑘 ) ∩ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ) = ∅ ) ) |
| 98 |
|
blssm |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑋 ) |
| 99 |
94 64 95 98
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑋 ) |
| 100 |
|
difin0ss |
⊢ ( ( ( 𝑋 ∖ 𝑘 ) ∩ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ) = ∅ → ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑋 → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑘 ) ) |
| 101 |
99 100
|
syl5com |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( ( ( 𝑋 ∖ 𝑘 ) ∩ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ) = ∅ → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑘 ) ) |
| 102 |
97 101
|
sylbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ≤ ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑘 ) ) |
| 103 |
93 102
|
mtod |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ¬ ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ≤ ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) ) |
| 104 |
85 88
|
ltnled |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) < ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ↔ ¬ ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ≤ ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) ) ) |
| 105 |
103 104
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → ( ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑥 ) < ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) |
| 106 |
67 105
|
eqbrtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) ∧ 𝑘 ∈ 𝑈 ) → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) < ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) |
| 107 |
61 62 86 88 106
|
fsumlt |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) < Σ 𝑘 ∈ 𝑈 ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) |
| 108 |
|
oveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝐷 𝑧 ) = ( 𝑥 𝐷 𝑧 ) ) |
| 109 |
108
|
mpteq2dv |
⊢ ( 𝑦 = 𝑥 → ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) = ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) ) |
| 110 |
109
|
rneqd |
⊢ ( 𝑦 = 𝑥 → ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) = ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) ) |
| 111 |
110
|
infeq1d |
⊢ ( 𝑦 = 𝑥 → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) = inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 112 |
111
|
sumeq2sdv |
⊢ ( 𝑦 = 𝑥 → Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) = Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 113 |
|
sumex |
⊢ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ∈ V |
| 114 |
112 8 113
|
fvmpt |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝐹 ‘ 𝑥 ) = Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 115 |
63 114
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ 𝑥 ) = Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑥 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 116 |
59
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ+ ) |
| 117 |
116
|
rpcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℂ ) |
| 118 |
|
fsumconst |
⊢ ( ( 𝑈 ∈ Fin ∧ ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℂ ) → Σ 𝑘 ∈ 𝑈 ( 𝑟 / ( ♯ ‘ 𝑈 ) ) = ( ( ♯ ‘ 𝑈 ) · ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ) |
| 119 |
61 117 118
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → Σ 𝑘 ∈ 𝑈 ( 𝑟 / ( ♯ ‘ 𝑈 ) ) = ( ( ♯ ‘ 𝑈 ) · ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ) |
| 120 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝑟 ∈ ℝ+ ) |
| 121 |
120
|
rpcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝑟 ∈ ℂ ) |
| 122 |
57
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( ♯ ‘ 𝑈 ) ∈ ℕ ) |
| 123 |
122
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( ♯ ‘ 𝑈 ) ∈ ℂ ) |
| 124 |
122
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( ♯ ‘ 𝑈 ) ≠ 0 ) |
| 125 |
121 123 124
|
divcan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( ( ♯ ‘ 𝑈 ) · ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) = 𝑟 ) |
| 126 |
119 125
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝑟 = Σ 𝑘 ∈ 𝑈 ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) |
| 127 |
107 115 126
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ 𝑥 ) < 𝑟 ) |
| 128 |
20
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝐹 : 𝑋 ⟶ ℝ+ ) |
| 129 |
128 63
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ+ ) |
| 130 |
129
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 131 |
120
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → 𝑟 ∈ ℝ ) |
| 132 |
130 131
|
ltnled |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ( ( 𝐹 ‘ 𝑥 ) < 𝑟 ↔ ¬ 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 133 |
127 132
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) → ¬ 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 134 |
133
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑢 ∈ 𝑈 ¬ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 → ¬ 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 135 |
60 134
|
biimtrrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ¬ ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 → ¬ 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 136 |
135
|
con4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) |
| 137 |
136
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) |
| 138 |
|
oveq2 |
⊢ ( 𝑑 = ( 𝑟 / ( ♯ ‘ 𝑈 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) = ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ) |
| 139 |
138
|
sseq1d |
⊢ ( 𝑑 = ( 𝑟 / ( ♯ ‘ 𝑈 ) ) → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) |
| 140 |
139
|
rexbidv |
⊢ ( 𝑑 = ( 𝑟 / ( ♯ ‘ 𝑈 ) ) → ( ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) |
| 141 |
140
|
ralbidv |
⊢ ( 𝑑 = ( 𝑟 / ( ♯ ‘ 𝑈 ) ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) ) |
| 142 |
141
|
rspcev |
⊢ ( ( ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ∈ ℝ+ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / ( ♯ ‘ 𝑈 ) ) ) ⊆ 𝑢 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 143 |
59 137 142
|
syl6an |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 144 |
143
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 𝑟 ≤ ( 𝐹 ‘ 𝑥 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 145 |
44 144
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 146 |
18 145
|
pm2.61dane |
⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |