Metamath Proof Explorer


Theorem difin0ss

Description: Difference, intersection, and subclass relationship. (Contributed by NM, 30-Apr-1994) (Proof shortened by Wolf Lammen, 30-Sep-2014)

Ref Expression
Assertion difin0ss ( ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ∅ → ( 𝐶𝐴𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 eq0 ( ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ ( ( 𝐴𝐵 ) ∩ 𝐶 ) )
2 iman ( ( 𝑥𝐶 → ( 𝑥𝐴𝑥𝐵 ) ) ↔ ¬ ( 𝑥𝐶 ∧ ¬ ( 𝑥𝐴𝑥𝐵 ) ) )
3 elin ( 𝑥 ∈ ( ( 𝐴𝐵 ) ∩ 𝐶 ) ↔ ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐶 ) )
4 eldif ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )
5 4 anbi2ci ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐶 ) ↔ ( 𝑥𝐶 ∧ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ) )
6 annim ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ↔ ¬ ( 𝑥𝐴𝑥𝐵 ) )
7 6 anbi2i ( ( 𝑥𝐶 ∧ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ) ↔ ( 𝑥𝐶 ∧ ¬ ( 𝑥𝐴𝑥𝐵 ) ) )
8 3 5 7 3bitri ( 𝑥 ∈ ( ( 𝐴𝐵 ) ∩ 𝐶 ) ↔ ( 𝑥𝐶 ∧ ¬ ( 𝑥𝐴𝑥𝐵 ) ) )
9 2 8 xchbinxr ( ( 𝑥𝐶 → ( 𝑥𝐴𝑥𝐵 ) ) ↔ ¬ 𝑥 ∈ ( ( 𝐴𝐵 ) ∩ 𝐶 ) )
10 ax-2 ( ( 𝑥𝐶 → ( 𝑥𝐴𝑥𝐵 ) ) → ( ( 𝑥𝐶𝑥𝐴 ) → ( 𝑥𝐶𝑥𝐵 ) ) )
11 9 10 sylbir ( ¬ 𝑥 ∈ ( ( 𝐴𝐵 ) ∩ 𝐶 ) → ( ( 𝑥𝐶𝑥𝐴 ) → ( 𝑥𝐶𝑥𝐵 ) ) )
12 11 al2imi ( ∀ 𝑥 ¬ 𝑥 ∈ ( ( 𝐴𝐵 ) ∩ 𝐶 ) → ( ∀ 𝑥 ( 𝑥𝐶𝑥𝐴 ) → ∀ 𝑥 ( 𝑥𝐶𝑥𝐵 ) ) )
13 dfss2 ( 𝐶𝐴 ↔ ∀ 𝑥 ( 𝑥𝐶𝑥𝐴 ) )
14 dfss2 ( 𝐶𝐵 ↔ ∀ 𝑥 ( 𝑥𝐶𝑥𝐵 ) )
15 12 13 14 3imtr4g ( ∀ 𝑥 ¬ 𝑥 ∈ ( ( 𝐴𝐵 ) ∩ 𝐶 ) → ( 𝐶𝐴𝐶𝐵 ) )
16 1 15 sylbi ( ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ∅ → ( 𝐶𝐴𝐶𝐵 ) )