| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lebnum.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
|
lebnum.d |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 3 |
|
lebnum.c |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| 4 |
|
lebnum.s |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) |
| 5 |
|
lebnum.u |
⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) |
| 6 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 8 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 10 |
9 5
|
eqtr3d |
⊢ ( 𝜑 → ∪ 𝐽 = ∪ 𝑈 ) |
| 11 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 12 |
11
|
cmpcov |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) → ∃ 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∪ 𝐽 = ∪ 𝑤 ) |
| 13 |
3 4 10 12
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∪ 𝐽 = ∪ 𝑤 ) |
| 14 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 15 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) → 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
| 16 |
15
|
elin1d |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) → 𝑤 ∈ 𝒫 𝑈 ) |
| 17 |
16
|
elpwid |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) → 𝑤 ⊆ 𝑈 ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑤 ⊆ 𝑈 ) |
| 19 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ∈ 𝑤 ) |
| 20 |
18 19
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ∈ 𝑈 ) |
| 21 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 22 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 23 |
|
rpxr |
⊢ ( 1 ∈ ℝ+ → 1 ∈ ℝ* ) |
| 24 |
14 23
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → 1 ∈ ℝ* ) |
| 25 |
|
blssm |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑋 ) |
| 26 |
21 22 24 25
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑋 ) |
| 27 |
|
sseq2 |
⊢ ( 𝑢 = 𝑋 → ( ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ↔ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑋 ) ) |
| 28 |
27
|
rspcev |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑋 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ) |
| 29 |
20 26 28
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ) |
| 30 |
29
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ) |
| 31 |
|
oveq2 |
⊢ ( 𝑑 = 1 → ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) = ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) |
| 32 |
31
|
sseq1d |
⊢ ( 𝑑 = 1 → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ) ) |
| 33 |
32
|
rexbidv |
⊢ ( 𝑑 = 1 → ( ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ) ) |
| 34 |
33
|
ralbidv |
⊢ ( 𝑑 = 1 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ) ) |
| 35 |
34
|
rspcev |
⊢ ( ( 1 ∈ ℝ+ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 36 |
14 30 35
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 37 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 38 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝐽 ∈ Comp ) |
| 39 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝑤 ⊆ 𝑈 ) |
| 40 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝑈 ⊆ 𝐽 ) |
| 41 |
39 40
|
sstrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝑤 ⊆ 𝐽 ) |
| 42 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝑋 = ∪ 𝐽 ) |
| 43 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → ∪ 𝐽 = ∪ 𝑤 ) |
| 44 |
42 43
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝑋 = ∪ 𝑤 ) |
| 45 |
15
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) → 𝑤 ∈ Fin ) |
| 46 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝑤 ∈ Fin ) |
| 47 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → ¬ 𝑋 ∈ 𝑤 ) |
| 48 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 49 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
| 50 |
1 37 38 41 44 46 47 48 49
|
lebnumlem3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 51 |
|
ssrexv |
⊢ ( 𝑤 ⊆ 𝑈 → ( ∃ 𝑢 ∈ 𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 → ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 52 |
39 51
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → ( ∃ 𝑢 ∈ 𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 → ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 53 |
52
|
ralimdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 54 |
53
|
reximdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 55 |
50 54
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 56 |
36 55
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 57 |
13 56
|
rexlimddv |
⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |