| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lebnum.j |
|
| 2 |
|
lebnum.d |
|
| 3 |
|
lebnum.c |
|
| 4 |
|
lebnum.s |
|
| 5 |
|
lebnum.u |
|
| 6 |
|
metxmet |
|
| 7 |
2 6
|
syl |
|
| 8 |
1
|
mopnuni |
|
| 9 |
7 8
|
syl |
|
| 10 |
9 5
|
eqtr3d |
|
| 11 |
|
eqid |
|
| 12 |
11
|
cmpcov |
|
| 13 |
3 4 10 12
|
syl3anc |
|
| 14 |
|
1rp |
|
| 15 |
|
simprl |
|
| 16 |
15
|
elin1d |
|
| 17 |
16
|
elpwid |
|
| 18 |
17
|
ad2antrr |
|
| 19 |
|
simplr |
|
| 20 |
18 19
|
sseldd |
|
| 21 |
7
|
ad3antrrr |
|
| 22 |
|
simpr |
|
| 23 |
|
rpxr |
|
| 24 |
14 23
|
mp1i |
|
| 25 |
|
blssm |
|
| 26 |
21 22 24 25
|
syl3anc |
|
| 27 |
|
sseq2 |
|
| 28 |
27
|
rspcev |
|
| 29 |
20 26 28
|
syl2anc |
|
| 30 |
29
|
ralrimiva |
|
| 31 |
|
oveq2 |
|
| 32 |
31
|
sseq1d |
|
| 33 |
32
|
rexbidv |
|
| 34 |
33
|
ralbidv |
|
| 35 |
34
|
rspcev |
|
| 36 |
14 30 35
|
sylancr |
|
| 37 |
2
|
ad2antrr |
|
| 38 |
3
|
ad2antrr |
|
| 39 |
17
|
adantr |
|
| 40 |
4
|
ad2antrr |
|
| 41 |
39 40
|
sstrd |
|
| 42 |
9
|
ad2antrr |
|
| 43 |
|
simplrr |
|
| 44 |
42 43
|
eqtrd |
|
| 45 |
15
|
elin2d |
|
| 46 |
45
|
adantr |
|
| 47 |
|
simpr |
|
| 48 |
|
eqid |
|
| 49 |
|
eqid |
|
| 50 |
1 37 38 41 44 46 47 48 49
|
lebnumlem3 |
|
| 51 |
|
ssrexv |
|
| 52 |
39 51
|
syl |
|
| 53 |
52
|
ralimdv |
|
| 54 |
53
|
reximdv |
|
| 55 |
50 54
|
mpd |
|
| 56 |
36 55
|
pm2.61dan |
|
| 57 |
13 56
|
rexlimddv |
|