Description: The Lebesgue number lemma, or Lebesgue covering lemma. If X is a compact metric space and U is an open cover of X , then there exists a positive real number d such that every ball of size d (and every subset of a ball of size d , including every subset of diameter less than d ) is a subset of some member of the cover. (Contributed by Mario Carneiro, 14-Feb-2015) (Proof shortened by Mario Carneiro, 5-Sep-2015) (Proof shortened by AV, 30-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lebnum.j | |
|
lebnum.d | |
||
lebnum.c | |
||
lebnum.s | |
||
lebnum.u | |
||
Assertion | lebnum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lebnum.j | |
|
2 | lebnum.d | |
|
3 | lebnum.c | |
|
4 | lebnum.s | |
|
5 | lebnum.u | |
|
6 | metxmet | |
|
7 | 2 6 | syl | |
8 | 1 | mopnuni | |
9 | 7 8 | syl | |
10 | 9 5 | eqtr3d | |
11 | eqid | |
|
12 | 11 | cmpcov | |
13 | 3 4 10 12 | syl3anc | |
14 | 1rp | |
|
15 | simprl | |
|
16 | 15 | elin1d | |
17 | 16 | elpwid | |
18 | 17 | ad2antrr | |
19 | simplr | |
|
20 | 18 19 | sseldd | |
21 | 7 | ad3antrrr | |
22 | simpr | |
|
23 | rpxr | |
|
24 | 14 23 | mp1i | |
25 | blssm | |
|
26 | 21 22 24 25 | syl3anc | |
27 | sseq2 | |
|
28 | 27 | rspcev | |
29 | 20 26 28 | syl2anc | |
30 | 29 | ralrimiva | |
31 | oveq2 | |
|
32 | 31 | sseq1d | |
33 | 32 | rexbidv | |
34 | 33 | ralbidv | |
35 | 34 | rspcev | |
36 | 14 30 35 | sylancr | |
37 | 2 | ad2antrr | |
38 | 3 | ad2antrr | |
39 | 17 | adantr | |
40 | 4 | ad2antrr | |
41 | 39 40 | sstrd | |
42 | 9 | ad2antrr | |
43 | simplrr | |
|
44 | 42 43 | eqtrd | |
45 | 15 | elin2d | |
46 | 45 | adantr | |
47 | simpr | |
|
48 | eqid | |
|
49 | eqid | |
|
50 | 1 37 38 41 44 46 47 48 49 | lebnumlem3 | |
51 | ssrexv | |
|
52 | 39 51 | syl | |
53 | 52 | ralimdv | |
54 | 53 | reximdv | |
55 | 50 54 | mpd | |
56 | 36 55 | pm2.61dan | |
57 | 13 56 | rexlimddv | |