Metamath Proof Explorer


Theorem lebnum

Description: The Lebesgue number lemma, or Lebesgue covering lemma. If X is a compact metric space and U is an open cover of X , then there exists a positive real number d such that every ball of size d (and every subset of a ball of size d , including every subset of diameter less than d ) is a subset of some member of the cover. (Contributed by Mario Carneiro, 14-Feb-2015) (Proof shortened by Mario Carneiro, 5-Sep-2015) (Proof shortened by AV, 30-Sep-2020)

Ref Expression
Hypotheses lebnum.j J=MetOpenD
lebnum.d φDMetX
lebnum.c φJComp
lebnum.s φUJ
lebnum.u φX=U
Assertion lebnum φd+xXuUxballDdu

Proof

Step Hyp Ref Expression
1 lebnum.j J=MetOpenD
2 lebnum.d φDMetX
3 lebnum.c φJComp
4 lebnum.s φUJ
5 lebnum.u φX=U
6 metxmet DMetXD∞MetX
7 2 6 syl φD∞MetX
8 1 mopnuni D∞MetXX=J
9 7 8 syl φX=J
10 9 5 eqtr3d φJ=U
11 eqid J=J
12 11 cmpcov JCompUJJ=Uw𝒫UFinJ=w
13 3 4 10 12 syl3anc φw𝒫UFinJ=w
14 1rp 1+
15 simprl φw𝒫UFinJ=ww𝒫UFin
16 15 elin1d φw𝒫UFinJ=ww𝒫U
17 16 elpwid φw𝒫UFinJ=wwU
18 17 ad2antrr φw𝒫UFinJ=wXwxXwU
19 simplr φw𝒫UFinJ=wXwxXXw
20 18 19 sseldd φw𝒫UFinJ=wXwxXXU
21 7 ad3antrrr φw𝒫UFinJ=wXwxXD∞MetX
22 simpr φw𝒫UFinJ=wXwxXxX
23 rpxr 1+1*
24 14 23 mp1i φw𝒫UFinJ=wXwxX1*
25 blssm D∞MetXxX1*xballD1X
26 21 22 24 25 syl3anc φw𝒫UFinJ=wXwxXxballD1X
27 sseq2 u=XxballD1uxballD1X
28 27 rspcev XUxballD1XuUxballD1u
29 20 26 28 syl2anc φw𝒫UFinJ=wXwxXuUxballD1u
30 29 ralrimiva φw𝒫UFinJ=wXwxXuUxballD1u
31 oveq2 d=1xballDd=xballD1
32 31 sseq1d d=1xballDduxballD1u
33 32 rexbidv d=1uUxballDduuUxballD1u
34 33 ralbidv d=1xXuUxballDduxXuUxballD1u
35 34 rspcev 1+xXuUxballD1ud+xXuUxballDdu
36 14 30 35 sylancr φw𝒫UFinJ=wXwd+xXuUxballDdu
37 2 ad2antrr φw𝒫UFinJ=w¬XwDMetX
38 3 ad2antrr φw𝒫UFinJ=w¬XwJComp
39 17 adantr φw𝒫UFinJ=w¬XwwU
40 4 ad2antrr φw𝒫UFinJ=w¬XwUJ
41 39 40 sstrd φw𝒫UFinJ=w¬XwwJ
42 9 ad2antrr φw𝒫UFinJ=w¬XwX=J
43 simplrr φw𝒫UFinJ=w¬XwJ=w
44 42 43 eqtrd φw𝒫UFinJ=w¬XwX=w
45 15 elin2d φw𝒫UFinJ=wwFin
46 45 adantr φw𝒫UFinJ=w¬XwwFin
47 simpr φw𝒫UFinJ=w¬Xw¬Xw
48 eqid yXkwsupranzXkyDz*<=yXkwsupranzXkyDz*<
49 eqid topGenran.=topGenran.
50 1 37 38 41 44 46 47 48 49 lebnumlem3 φw𝒫UFinJ=w¬Xwd+xXuwxballDdu
51 ssrexv wUuwxballDduuUxballDdu
52 39 51 syl φw𝒫UFinJ=w¬XwuwxballDduuUxballDdu
53 52 ralimdv φw𝒫UFinJ=w¬XwxXuwxballDduxXuUxballDdu
54 53 reximdv φw𝒫UFinJ=w¬Xwd+xXuwxballDdud+xXuUxballDdu
55 50 54 mpd φw𝒫UFinJ=w¬Xwd+xXuUxballDdu
56 36 55 pm2.61dan φw𝒫UFinJ=wd+xXuUxballDdu
57 13 56 rexlimddv φd+xXuUxballDdu