Metamath Proof Explorer


Theorem cmpcov

Description: An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009)

Ref Expression
Hypothesis iscmp.1 𝑋 = 𝐽
Assertion cmpcov ( ( 𝐽 ∈ Comp ∧ 𝑆𝐽𝑋 = 𝑆 ) → ∃ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑋 = 𝑠 )

Proof

Step Hyp Ref Expression
1 iscmp.1 𝑋 = 𝐽
2 unieq ( 𝑟 = 𝑆 𝑟 = 𝑆 )
3 2 eqeq2d ( 𝑟 = 𝑆 → ( 𝑋 = 𝑟𝑋 = 𝑆 ) )
4 pweq ( 𝑟 = 𝑆 → 𝒫 𝑟 = 𝒫 𝑆 )
5 4 ineq1d ( 𝑟 = 𝑆 → ( 𝒫 𝑟 ∩ Fin ) = ( 𝒫 𝑆 ∩ Fin ) )
6 5 rexeqdv ( 𝑟 = 𝑆 → ( ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = 𝑠 ↔ ∃ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑋 = 𝑠 ) )
7 3 6 imbi12d ( 𝑟 = 𝑆 → ( ( 𝑋 = 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = 𝑠 ) ↔ ( 𝑋 = 𝑆 → ∃ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑋 = 𝑠 ) ) )
8 1 iscmp ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑋 = 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = 𝑠 ) ) )
9 8 simprbi ( 𝐽 ∈ Comp → ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑋 = 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = 𝑠 ) )
10 9 adantr ( ( 𝐽 ∈ Comp ∧ 𝑆𝐽 ) → ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑋 = 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = 𝑠 ) )
11 ssexg ( ( 𝑆𝐽𝐽 ∈ Comp ) → 𝑆 ∈ V )
12 11 ancoms ( ( 𝐽 ∈ Comp ∧ 𝑆𝐽 ) → 𝑆 ∈ V )
13 simpr ( ( 𝐽 ∈ Comp ∧ 𝑆𝐽 ) → 𝑆𝐽 )
14 12 13 elpwd ( ( 𝐽 ∈ Comp ∧ 𝑆𝐽 ) → 𝑆 ∈ 𝒫 𝐽 )
15 7 10 14 rspcdva ( ( 𝐽 ∈ Comp ∧ 𝑆𝐽 ) → ( 𝑋 = 𝑆 → ∃ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑋 = 𝑠 ) )
16 15 3impia ( ( 𝐽 ∈ Comp ∧ 𝑆𝐽𝑋 = 𝑆 ) → ∃ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑋 = 𝑠 )