Step |
Hyp |
Ref |
Expression |
1 |
|
iscmp.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
dfss3 |
⊢ ( 𝑋 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝑋 𝑥 ∈ ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ) |
3 |
|
elunirab |
⊢ ( 𝑥 ∈ ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ↔ ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) |
4 |
3
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝑥 ∈ ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) |
5 |
2 4
|
sylbbr |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) → 𝑋 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ) |
6 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ⊆ 𝐽 |
7 |
6
|
unissi |
⊢ ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ⊆ ∪ 𝐽 |
8 |
7 1
|
sseqtrri |
⊢ ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ⊆ 𝑋 |
9 |
8
|
a1i |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) → ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ⊆ 𝑋 ) |
10 |
5 9
|
eqssd |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) → 𝑋 = ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ) |
11 |
1
|
cmpcov |
⊢ ( ( 𝐽 ∈ Comp ∧ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ⊆ 𝐽 ∧ 𝑋 = ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ) → ∃ 𝑠 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∩ Fin ) 𝑋 = ∪ 𝑠 ) |
12 |
6 11
|
mp3an2 |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑋 = ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ) → ∃ 𝑠 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∩ Fin ) 𝑋 = ∪ 𝑠 ) |
13 |
10 12
|
sylan2 |
⊢ ( ( 𝐽 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) → ∃ 𝑠 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∩ Fin ) 𝑋 = ∪ 𝑠 ) |
14 |
|
ssrab |
⊢ ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ↔ ( 𝑠 ⊆ 𝐽 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) |
15 |
14
|
anbi1i |
⊢ ( ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑋 = ∪ 𝑠 ) ↔ ( ( 𝑠 ⊆ 𝐽 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ∧ 𝑋 = ∪ 𝑠 ) ) |
16 |
|
an32 |
⊢ ( ( ( 𝑠 ⊆ 𝐽 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ∧ 𝑋 = ∪ 𝑠 ) ↔ ( ( 𝑠 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑠 ) ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) |
17 |
|
anass |
⊢ ( ( ( 𝑠 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑠 ) ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ↔ ( 𝑠 ⊆ 𝐽 ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ) |
18 |
15 16 17
|
3bitri |
⊢ ( ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑋 = ∪ 𝑠 ) ↔ ( 𝑠 ⊆ 𝐽 ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ) |
19 |
18
|
anbi1i |
⊢ ( ( ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑋 = ∪ 𝑠 ) ∧ 𝑠 ∈ Fin ) ↔ ( ( 𝑠 ⊆ 𝐽 ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ∧ 𝑠 ∈ Fin ) ) |
20 |
|
an32 |
⊢ ( ( ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑠 ∈ Fin ) ∧ 𝑋 = ∪ 𝑠 ) ↔ ( ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑋 = ∪ 𝑠 ) ∧ 𝑠 ∈ Fin ) ) |
21 |
|
an32 |
⊢ ( ( ( 𝑠 ⊆ 𝐽 ∧ 𝑠 ∈ Fin ) ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ↔ ( ( 𝑠 ⊆ 𝐽 ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ∧ 𝑠 ∈ Fin ) ) |
22 |
19 20 21
|
3bitr4i |
⊢ ( ( ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑠 ∈ Fin ) ∧ 𝑋 = ∪ 𝑠 ) ↔ ( ( 𝑠 ⊆ 𝐽 ∧ 𝑠 ∈ Fin ) ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ) |
23 |
|
elfpw |
⊢ ( 𝑠 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∩ Fin ) ↔ ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑠 ∈ Fin ) ) |
24 |
23
|
anbi1i |
⊢ ( ( 𝑠 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) ↔ ( ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑠 ∈ Fin ) ∧ 𝑋 = ∪ 𝑠 ) ) |
25 |
|
elfpw |
⊢ ( 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ↔ ( 𝑠 ⊆ 𝐽 ∧ 𝑠 ∈ Fin ) ) |
26 |
25
|
anbi1i |
⊢ ( ( 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ↔ ( ( 𝑠 ⊆ 𝐽 ∧ 𝑠 ∈ Fin ) ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ) |
27 |
22 24 26
|
3bitr4i |
⊢ ( ( 𝑠 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) ↔ ( 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ) |
28 |
27
|
rexbii2 |
⊢ ( ∃ 𝑠 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∩ Fin ) 𝑋 = ∪ 𝑠 ↔ ∃ 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) |
29 |
13 28
|
sylib |
⊢ ( ( 𝐽 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) → ∃ 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) |