Metamath Proof Explorer


Theorem cmpcov2

Description: Rewrite cmpcov for the cover { y e. J | ph } . (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis iscmp.1 X=J
Assertion cmpcov2 JCompxXyJxyφs𝒫JFinX=sysφ

Proof

Step Hyp Ref Expression
1 iscmp.1 X=J
2 dfss3 XyJ|φxXxyJ|φ
3 elunirab xyJ|φyJxyφ
4 3 ralbii xXxyJ|φxXyJxyφ
5 2 4 sylbbr xXyJxyφXyJ|φ
6 ssrab2 yJ|φJ
7 6 unissi yJ|φJ
8 7 1 sseqtrri yJ|φX
9 8 a1i xXyJxyφyJ|φX
10 5 9 eqssd xXyJxyφX=yJ|φ
11 1 cmpcov JCompyJ|φJX=yJ|φs𝒫yJ|φFinX=s
12 6 11 mp3an2 JCompX=yJ|φs𝒫yJ|φFinX=s
13 10 12 sylan2 JCompxXyJxyφs𝒫yJ|φFinX=s
14 ssrab syJ|φsJysφ
15 14 anbi1i syJ|φX=ssJysφX=s
16 an32 sJysφX=ssJX=sysφ
17 anass sJX=sysφsJX=sysφ
18 15 16 17 3bitri syJ|φX=ssJX=sysφ
19 18 anbi1i syJ|φX=ssFinsJX=sysφsFin
20 an32 syJ|φsFinX=ssyJ|φX=ssFin
21 an32 sJsFinX=sysφsJX=sysφsFin
22 19 20 21 3bitr4i syJ|φsFinX=ssJsFinX=sysφ
23 elfpw s𝒫yJ|φFinsyJ|φsFin
24 23 anbi1i s𝒫yJ|φFinX=ssyJ|φsFinX=s
25 elfpw s𝒫JFinsJsFin
26 25 anbi1i s𝒫JFinX=sysφsJsFinX=sysφ
27 22 24 26 3bitr4i s𝒫yJ|φFinX=ss𝒫JFinX=sysφ
28 27 rexbii2 s𝒫yJ|φFinX=ss𝒫JFinX=sysφ
29 13 28 sylib JCompxXyJxyφs𝒫JFinX=sysφ