Metamath Proof Explorer


Theorem metdsval

Description: Value of the "distance to a set" function. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 4-Sep-2015) (Revised by AV, 30-Sep-2020)

Ref Expression
Hypothesis metdscn.f
|- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) )
Assertion metdsval
|- ( A e. X -> ( F ` A ) = inf ( ran ( y e. S |-> ( A D y ) ) , RR* , < ) )

Proof

Step Hyp Ref Expression
1 metdscn.f
 |-  F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) )
2 oveq1
 |-  ( x = A -> ( x D y ) = ( A D y ) )
3 2 mpteq2dv
 |-  ( x = A -> ( y e. S |-> ( x D y ) ) = ( y e. S |-> ( A D y ) ) )
4 3 rneqd
 |-  ( x = A -> ran ( y e. S |-> ( x D y ) ) = ran ( y e. S |-> ( A D y ) ) )
5 4 infeq1d
 |-  ( x = A -> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) = inf ( ran ( y e. S |-> ( A D y ) ) , RR* , < ) )
6 xrltso
 |-  < Or RR*
7 6 infex
 |-  inf ( ran ( y e. S |-> ( A D y ) ) , RR* , < ) e. _V
8 5 1 7 fvmpt
 |-  ( A e. X -> ( F ` A ) = inf ( ran ( y e. S |-> ( A D y ) ) , RR* , < ) )