Metamath Proof Explorer


Theorem metdsval

Description: Value of the "distance to a set" function. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 4-Sep-2015) (Revised by AV, 30-Sep-2020)

Ref Expression
Hypothesis metdscn.f F=xXsupranySxDy*<
Assertion metdsval AXFA=supranySADy*<

Proof

Step Hyp Ref Expression
1 metdscn.f F=xXsupranySxDy*<
2 oveq1 x=AxDy=ADy
3 2 mpteq2dv x=AySxDy=ySADy
4 3 rneqd x=AranySxDy=ranySADy
5 4 infeq1d x=AsupranySxDy*<=supranySADy*<
6 xrltso <Or*
7 6 infex supranySADy*<V
8 5 1 7 fvmpt AXFA=supranySADy*<