| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem36.1 | ⊢ Ⅎ ℎ 𝑄 | 
						
							| 2 |  | stoweidlem36.2 | ⊢ Ⅎ 𝑡 𝐻 | 
						
							| 3 |  | stoweidlem36.3 | ⊢ Ⅎ 𝑡 𝐹 | 
						
							| 4 |  | stoweidlem36.4 | ⊢ Ⅎ 𝑡 𝐺 | 
						
							| 5 |  | stoweidlem36.5 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 6 |  | stoweidlem36.6 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 7 |  | stoweidlem36.7 | ⊢ 𝑄  =  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } | 
						
							| 8 |  | stoweidlem36.8 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 9 |  | stoweidlem36.9 | ⊢ 𝐺  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 10 |  | stoweidlem36.10 | ⊢ 𝑁  =  sup ( ran  𝐺 ,  ℝ ,   <  ) | 
						
							| 11 |  | stoweidlem36.11 | ⊢ 𝐻  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  /  𝑁 ) ) | 
						
							| 12 |  | stoweidlem36.12 | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 13 |  | stoweidlem36.13 | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 14 |  | stoweidlem36.14 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 15 |  | stoweidlem36.15 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 16 |  | stoweidlem36.16 | ⊢ ( 𝜑  →  𝑆  ∈  𝑇 ) | 
						
							| 17 |  | stoweidlem36.17 | ⊢ ( 𝜑  →  𝑍  ∈  𝑇 ) | 
						
							| 18 |  | stoweidlem36.18 | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
						
							| 19 |  | stoweidlem36.19 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑆 )  ≠  ( 𝐹 ‘ 𝑍 ) ) | 
						
							| 20 |  | stoweidlem36.20 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑍 )  =  0 ) | 
						
							| 21 |  | eqid | ⊢ ( 𝐽  Cn  𝐾 )  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 22 | 3 | nfeq2 | ⊢ Ⅎ 𝑡 𝑓  =  𝐹 | 
						
							| 23 | 3 | nfeq2 | ⊢ Ⅎ 𝑡 𝑔  =  𝐹 | 
						
							| 24 | 22 23 14 | stoweidlem6 | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐹  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 25 | 18 18 24 | mpd3an23 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 26 | 9 25 | eqeltrid | ⊢ ( 𝜑  →  𝐺  ∈  𝐴 ) | 
						
							| 27 | 13 26 | sseldd | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 28 | 6 8 21 27 | fcnre | ⊢ ( 𝜑  →  𝐺 : 𝑇 ⟶ ℝ ) | 
						
							| 29 | 28 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 30 | 29 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 31 | 16 | ne0d | ⊢ ( 𝜑  →  𝑇  ≠  ∅ ) | 
						
							| 32 | 8 6 12 27 31 | cncmpmax | ⊢ ( 𝜑  →  ( sup ( ran  𝐺 ,  ℝ ,   <  )  ∈  ran  𝐺  ∧  sup ( ran  𝐺 ,  ℝ ,   <  )  ∈  ℝ  ∧  ∀ 𝑠  ∈  𝑇 ( 𝐺 ‘ 𝑠 )  ≤  sup ( ran  𝐺 ,  ℝ ,   <  ) ) ) | 
						
							| 33 | 32 | simp2d | ⊢ ( 𝜑  →  sup ( ran  𝐺 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 34 | 10 33 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 35 | 34 | recnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑁  ∈  ℂ ) | 
						
							| 37 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 38 | 28 16 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑆 )  ∈  ℝ ) | 
						
							| 39 | 13 18 | sseldd | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 40 | 6 8 21 39 | fcnre | ⊢ ( 𝜑  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 41 | 40 16 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑆 )  ∈  ℝ ) | 
						
							| 42 | 19 20 | neeqtrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑆 )  ≠  0 ) | 
						
							| 43 | 41 42 | msqgt0d | ⊢ ( 𝜑  →  0  <  ( ( 𝐹 ‘ 𝑆 )  ·  ( 𝐹 ‘ 𝑆 ) ) ) | 
						
							| 44 | 41 41 | remulcld | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑆 )  ·  ( 𝐹 ‘ 𝑆 ) )  ∈  ℝ ) | 
						
							| 45 |  | nfcv | ⊢ Ⅎ 𝑡 𝑆 | 
						
							| 46 | 3 45 | nffv | ⊢ Ⅎ 𝑡 ( 𝐹 ‘ 𝑆 ) | 
						
							| 47 |  | nfcv | ⊢ Ⅎ 𝑡  · | 
						
							| 48 | 46 47 46 | nfov | ⊢ Ⅎ 𝑡 ( ( 𝐹 ‘ 𝑆 )  ·  ( 𝐹 ‘ 𝑆 ) ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑡  =  𝑆  →  ( 𝐹 ‘ 𝑡 )  =  ( 𝐹 ‘ 𝑆 ) ) | 
						
							| 50 | 49 49 | oveq12d | ⊢ ( 𝑡  =  𝑆  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑆 )  ·  ( 𝐹 ‘ 𝑆 ) ) ) | 
						
							| 51 | 45 48 50 9 | fvmptf | ⊢ ( ( 𝑆  ∈  𝑇  ∧  ( ( 𝐹 ‘ 𝑆 )  ·  ( 𝐹 ‘ 𝑆 ) )  ∈  ℝ )  →  ( 𝐺 ‘ 𝑆 )  =  ( ( 𝐹 ‘ 𝑆 )  ·  ( 𝐹 ‘ 𝑆 ) ) ) | 
						
							| 52 | 16 44 51 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑆 )  =  ( ( 𝐹 ‘ 𝑆 )  ·  ( 𝐹 ‘ 𝑆 ) ) ) | 
						
							| 53 | 43 52 | breqtrrd | ⊢ ( 𝜑  →  0  <  ( 𝐺 ‘ 𝑆 ) ) | 
						
							| 54 | 32 | simp3d | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  𝑇 ( 𝐺 ‘ 𝑠 )  ≤  sup ( ran  𝐺 ,  ℝ ,   <  ) ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝑠  =  𝑆  →  ( 𝐺 ‘ 𝑠 )  =  ( 𝐺 ‘ 𝑆 ) ) | 
						
							| 56 | 55 | breq1d | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝐺 ‘ 𝑠 )  ≤  sup ( ran  𝐺 ,  ℝ ,   <  )  ↔  ( 𝐺 ‘ 𝑆 )  ≤  sup ( ran  𝐺 ,  ℝ ,   <  ) ) ) | 
						
							| 57 | 56 | rspccva | ⊢ ( ( ∀ 𝑠  ∈  𝑇 ( 𝐺 ‘ 𝑠 )  ≤  sup ( ran  𝐺 ,  ℝ ,   <  )  ∧  𝑆  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑆 )  ≤  sup ( ran  𝐺 ,  ℝ ,   <  ) ) | 
						
							| 58 | 54 16 57 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑆 )  ≤  sup ( ran  𝐺 ,  ℝ ,   <  ) ) | 
						
							| 59 | 37 38 33 53 58 | ltletrd | ⊢ ( 𝜑  →  0  <  sup ( ran  𝐺 ,  ℝ ,   <  ) ) | 
						
							| 60 | 59 | gt0ne0d | ⊢ ( 𝜑  →  sup ( ran  𝐺 ,  ℝ ,   <  )  ≠  0 ) | 
						
							| 61 | 10 | neeq1i | ⊢ ( 𝑁  ≠  0  ↔  sup ( ran  𝐺 ,  ℝ ,   <  )  ≠  0 ) | 
						
							| 62 | 60 61 | sylibr | ⊢ ( 𝜑  →  𝑁  ≠  0 ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑁  ≠  0 ) | 
						
							| 64 | 30 36 63 | divrecd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑡 )  /  𝑁 )  =  ( ( 𝐺 ‘ 𝑡 )  ·  ( 1  /  𝑁 ) ) ) | 
						
							| 65 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 66 | 34 62 | rereccld | ⊢ ( 𝜑  →  ( 1  /  𝑁 )  ∈  ℝ ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 1  /  𝑁 )  ∈  ℝ ) | 
						
							| 68 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) ) | 
						
							| 69 | 68 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( 1  /  𝑁 )  ∈  ℝ )  →  ( ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) ) ‘ 𝑡 )  =  ( 1  /  𝑁 ) ) | 
						
							| 70 | 65 67 69 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) ) ‘ 𝑡 )  =  ( 1  /  𝑁 ) ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑡 )  ·  ( ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) ) ‘ 𝑡 ) )  =  ( ( 𝐺 ‘ 𝑡 )  ·  ( 1  /  𝑁 ) ) ) | 
						
							| 72 | 64 71 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑡 )  /  𝑁 )  =  ( ( 𝐺 ‘ 𝑡 )  ·  ( ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) ) ‘ 𝑡 ) ) ) | 
						
							| 73 | 5 72 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  /  𝑁 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  ·  ( ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 74 | 11 73 | eqtrid | ⊢ ( 𝜑  →  𝐻  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  ·  ( ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 75 | 15 | stoweidlem4 | ⊢ ( ( 𝜑  ∧  ( 1  /  𝑁 )  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) )  ∈  𝐴 ) | 
						
							| 76 | 66 75 | mpdan | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) )  ∈  𝐴 ) | 
						
							| 77 | 4 | nfeq2 | ⊢ Ⅎ 𝑡 𝑓  =  𝐺 | 
						
							| 78 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) ) | 
						
							| 79 | 78 | nfeq2 | ⊢ Ⅎ 𝑡 𝑔  =  ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) ) | 
						
							| 80 | 77 79 14 | stoweidlem6 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  𝐴  ∧  ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  ·  ( ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 81 | 26 76 80 | mpd3an23 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  ·  ( ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑁 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 82 | 74 81 | eqeltrd | ⊢ ( 𝜑  →  𝐻  ∈  𝐴 ) | 
						
							| 83 | 28 17 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 84 | 83 34 62 | redivcld | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑍 )  /  𝑁 )  ∈  ℝ ) | 
						
							| 85 |  | nfcv | ⊢ Ⅎ 𝑡 𝑍 | 
						
							| 86 | 4 85 | nffv | ⊢ Ⅎ 𝑡 ( 𝐺 ‘ 𝑍 ) | 
						
							| 87 |  | nfcv | ⊢ Ⅎ 𝑡  / | 
						
							| 88 |  | nfcv | ⊢ Ⅎ 𝑡 𝑁 | 
						
							| 89 | 86 87 88 | nfov | ⊢ Ⅎ 𝑡 ( ( 𝐺 ‘ 𝑍 )  /  𝑁 ) | 
						
							| 90 |  | fveq2 | ⊢ ( 𝑡  =  𝑍  →  ( 𝐺 ‘ 𝑡 )  =  ( 𝐺 ‘ 𝑍 ) ) | 
						
							| 91 | 90 | oveq1d | ⊢ ( 𝑡  =  𝑍  →  ( ( 𝐺 ‘ 𝑡 )  /  𝑁 )  =  ( ( 𝐺 ‘ 𝑍 )  /  𝑁 ) ) | 
						
							| 92 | 85 89 91 11 | fvmptf | ⊢ ( ( 𝑍  ∈  𝑇  ∧  ( ( 𝐺 ‘ 𝑍 )  /  𝑁 )  ∈  ℝ )  →  ( 𝐻 ‘ 𝑍 )  =  ( ( 𝐺 ‘ 𝑍 )  /  𝑁 ) ) | 
						
							| 93 | 17 84 92 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑍 )  =  ( ( 𝐺 ‘ 𝑍 )  /  𝑁 ) ) | 
						
							| 94 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 95 | 20 94 | eqeltrdi | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 96 | 95 95 | remulcld | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑍 )  ·  ( 𝐹 ‘ 𝑍 ) )  ∈  ℝ ) | 
						
							| 97 | 3 85 | nffv | ⊢ Ⅎ 𝑡 ( 𝐹 ‘ 𝑍 ) | 
						
							| 98 | 97 47 97 | nfov | ⊢ Ⅎ 𝑡 ( ( 𝐹 ‘ 𝑍 )  ·  ( 𝐹 ‘ 𝑍 ) ) | 
						
							| 99 |  | fveq2 | ⊢ ( 𝑡  =  𝑍  →  ( 𝐹 ‘ 𝑡 )  =  ( 𝐹 ‘ 𝑍 ) ) | 
						
							| 100 | 99 99 | oveq12d | ⊢ ( 𝑡  =  𝑍  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑍 )  ·  ( 𝐹 ‘ 𝑍 ) ) ) | 
						
							| 101 | 85 98 100 9 | fvmptf | ⊢ ( ( 𝑍  ∈  𝑇  ∧  ( ( 𝐹 ‘ 𝑍 )  ·  ( 𝐹 ‘ 𝑍 ) )  ∈  ℝ )  →  ( 𝐺 ‘ 𝑍 )  =  ( ( 𝐹 ‘ 𝑍 )  ·  ( 𝐹 ‘ 𝑍 ) ) ) | 
						
							| 102 | 17 96 101 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑍 )  =  ( ( 𝐹 ‘ 𝑍 )  ·  ( 𝐹 ‘ 𝑍 ) ) ) | 
						
							| 103 | 20 20 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑍 )  ·  ( 𝐹 ‘ 𝑍 ) )  =  ( 0  ·  0 ) ) | 
						
							| 104 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 105 | 104 | mul02i | ⊢ ( 0  ·  0 )  =  0 | 
						
							| 106 | 103 105 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑍 )  ·  ( 𝐹 ‘ 𝑍 ) )  =  0 ) | 
						
							| 107 | 102 106 | eqtrd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑍 )  =  0 ) | 
						
							| 108 | 107 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑍 )  /  𝑁 )  =  ( 0  /  𝑁 ) ) | 
						
							| 109 | 35 62 | div0d | ⊢ ( 𝜑  →  ( 0  /  𝑁 )  =  0 ) | 
						
							| 110 | 93 108 109 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑍 )  =  0 ) | 
						
							| 111 | 40 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 112 | 111 | msqge0d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 113 | 111 111 | remulcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) )  ∈  ℝ ) | 
						
							| 114 | 9 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) )  ∈  ℝ )  →  ( 𝐺 ‘ 𝑡 )  =  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 115 | 65 113 114 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑡 )  =  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 116 | 112 115 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 117 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑁  ∈  ℝ ) | 
						
							| 118 | 59 10 | breqtrrdi | ⊢ ( 𝜑  →  0  <  𝑁 ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  0  <  𝑁 ) | 
						
							| 120 |  | divge0 | ⊢ ( ( ( ( 𝐺 ‘ 𝑡 )  ∈  ℝ  ∧  0  ≤  ( 𝐺 ‘ 𝑡 ) )  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 ) )  →  0  ≤  ( ( 𝐺 ‘ 𝑡 )  /  𝑁 ) ) | 
						
							| 121 | 29 116 117 119 120 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( ( 𝐺 ‘ 𝑡 )  /  𝑁 ) ) | 
						
							| 122 | 29 117 63 | redivcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑡 )  /  𝑁 )  ∈  ℝ ) | 
						
							| 123 | 11 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( ( 𝐺 ‘ 𝑡 )  /  𝑁 )  ∈  ℝ )  →  ( 𝐻 ‘ 𝑡 )  =  ( ( 𝐺 ‘ 𝑡 )  /  𝑁 ) ) | 
						
							| 124 | 65 122 123 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑡 )  =  ( ( 𝐺 ‘ 𝑡 )  /  𝑁 ) ) | 
						
							| 125 | 121 124 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( 𝐻 ‘ 𝑡 ) ) | 
						
							| 126 | 30 | div1d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑡 )  /  1 )  =  ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 127 |  | fveq2 | ⊢ ( 𝑠  =  𝑡  →  ( 𝐺 ‘ 𝑠 )  =  ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 128 | 127 | breq1d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝐺 ‘ 𝑠 )  ≤  sup ( ran  𝐺 ,  ℝ ,   <  )  ↔  ( 𝐺 ‘ 𝑡 )  ≤  sup ( ran  𝐺 ,  ℝ ,   <  ) ) ) | 
						
							| 129 | 128 | rspccva | ⊢ ( ( ∀ 𝑠  ∈  𝑇 ( 𝐺 ‘ 𝑠 )  ≤  sup ( ran  𝐺 ,  ℝ ,   <  )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑡 )  ≤  sup ( ran  𝐺 ,  ℝ ,   <  ) ) | 
						
							| 130 | 54 129 | sylan | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑡 )  ≤  sup ( ran  𝐺 ,  ℝ ,   <  ) ) | 
						
							| 131 | 130 10 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑡 )  ≤  𝑁 ) | 
						
							| 132 | 126 131 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑡 )  /  1 )  ≤  𝑁 ) | 
						
							| 133 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  1  ∈  ℝ ) | 
						
							| 134 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 135 | 134 | a1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  0  <  1 ) | 
						
							| 136 |  | lediv23 | ⊢ ( ( ( 𝐺 ‘ 𝑡 )  ∈  ℝ  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 )  ∧  ( 1  ∈  ℝ  ∧  0  <  1 ) )  →  ( ( ( 𝐺 ‘ 𝑡 )  /  𝑁 )  ≤  1  ↔  ( ( 𝐺 ‘ 𝑡 )  /  1 )  ≤  𝑁 ) ) | 
						
							| 137 | 29 117 119 133 135 136 | syl122anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( ( 𝐺 ‘ 𝑡 )  /  𝑁 )  ≤  1  ↔  ( ( 𝐺 ‘ 𝑡 )  /  1 )  ≤  𝑁 ) ) | 
						
							| 138 | 132 137 | mpbird | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑡 )  /  𝑁 )  ≤  1 ) | 
						
							| 139 | 124 138 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑡 )  ≤  1 ) | 
						
							| 140 | 125 139 | jca | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 0  ≤  ( 𝐻 ‘ 𝑡 )  ∧  ( 𝐻 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 141 | 140 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  →  ( 0  ≤  ( 𝐻 ‘ 𝑡 )  ∧  ( 𝐻 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 142 | 5 141 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝐻 ‘ 𝑡 )  ∧  ( 𝐻 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 143 | 110 142 | jca | ⊢ ( 𝜑  →  ( ( 𝐻 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝐻 ‘ 𝑡 )  ∧  ( 𝐻 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 144 |  | fveq1 | ⊢ ( ℎ  =  𝐻  →  ( ℎ ‘ 𝑍 )  =  ( 𝐻 ‘ 𝑍 ) ) | 
						
							| 145 | 144 | eqeq1d | ⊢ ( ℎ  =  𝐻  →  ( ( ℎ ‘ 𝑍 )  =  0  ↔  ( 𝐻 ‘ 𝑍 )  =  0 ) ) | 
						
							| 146 | 2 | nfeq2 | ⊢ Ⅎ 𝑡 ℎ  =  𝐻 | 
						
							| 147 |  | fveq1 | ⊢ ( ℎ  =  𝐻  →  ( ℎ ‘ 𝑡 )  =  ( 𝐻 ‘ 𝑡 ) ) | 
						
							| 148 | 147 | breq2d | ⊢ ( ℎ  =  𝐻  →  ( 0  ≤  ( ℎ ‘ 𝑡 )  ↔  0  ≤  ( 𝐻 ‘ 𝑡 ) ) ) | 
						
							| 149 | 147 | breq1d | ⊢ ( ℎ  =  𝐻  →  ( ( ℎ ‘ 𝑡 )  ≤  1  ↔  ( 𝐻 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 150 | 148 149 | anbi12d | ⊢ ( ℎ  =  𝐻  →  ( ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ↔  ( 0  ≤  ( 𝐻 ‘ 𝑡 )  ∧  ( 𝐻 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 151 | 146 150 | ralbid | ⊢ ( ℎ  =  𝐻  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ↔  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝐻 ‘ 𝑡 )  ∧  ( 𝐻 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 152 | 145 151 | anbi12d | ⊢ ( ℎ  =  𝐻  →  ( ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) )  ↔  ( ( 𝐻 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝐻 ‘ 𝑡 )  ∧  ( 𝐻 ‘ 𝑡 )  ≤  1 ) ) ) ) | 
						
							| 153 | 152 | elrab | ⊢ ( 𝐻  ∈  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) }  ↔  ( 𝐻  ∈  𝐴  ∧  ( ( 𝐻 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝐻 ‘ 𝑡 )  ∧  ( 𝐻 ‘ 𝑡 )  ≤  1 ) ) ) ) | 
						
							| 154 | 82 143 153 | sylanbrc | ⊢ ( 𝜑  →  𝐻  ∈  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } ) | 
						
							| 155 | 154 7 | eleqtrrdi | ⊢ ( 𝜑  →  𝐻  ∈  𝑄 ) | 
						
							| 156 | 38 34 53 118 | divgt0d | ⊢ ( 𝜑  →  0  <  ( ( 𝐺 ‘ 𝑆 )  /  𝑁 ) ) | 
						
							| 157 | 38 34 62 | redivcld | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑆 )  /  𝑁 )  ∈  ℝ ) | 
						
							| 158 | 4 45 | nffv | ⊢ Ⅎ 𝑡 ( 𝐺 ‘ 𝑆 ) | 
						
							| 159 | 158 87 88 | nfov | ⊢ Ⅎ 𝑡 ( ( 𝐺 ‘ 𝑆 )  /  𝑁 ) | 
						
							| 160 |  | fveq2 | ⊢ ( 𝑡  =  𝑆  →  ( 𝐺 ‘ 𝑡 )  =  ( 𝐺 ‘ 𝑆 ) ) | 
						
							| 161 | 160 | oveq1d | ⊢ ( 𝑡  =  𝑆  →  ( ( 𝐺 ‘ 𝑡 )  /  𝑁 )  =  ( ( 𝐺 ‘ 𝑆 )  /  𝑁 ) ) | 
						
							| 162 | 45 159 161 11 | fvmptf | ⊢ ( ( 𝑆  ∈  𝑇  ∧  ( ( 𝐺 ‘ 𝑆 )  /  𝑁 )  ∈  ℝ )  →  ( 𝐻 ‘ 𝑆 )  =  ( ( 𝐺 ‘ 𝑆 )  /  𝑁 ) ) | 
						
							| 163 | 16 157 162 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑆 )  =  ( ( 𝐺 ‘ 𝑆 )  /  𝑁 ) ) | 
						
							| 164 | 156 163 | breqtrrd | ⊢ ( 𝜑  →  0  <  ( 𝐻 ‘ 𝑆 ) ) | 
						
							| 165 |  | nfcv | ⊢ Ⅎ ℎ 𝐻 | 
						
							| 166 | 1 | nfel2 | ⊢ Ⅎ ℎ 𝐻  ∈  𝑄 | 
						
							| 167 |  | nfv | ⊢ Ⅎ ℎ 0  <  ( 𝐻 ‘ 𝑆 ) | 
						
							| 168 | 166 167 | nfan | ⊢ Ⅎ ℎ ( 𝐻  ∈  𝑄  ∧  0  <  ( 𝐻 ‘ 𝑆 ) ) | 
						
							| 169 |  | eleq1 | ⊢ ( ℎ  =  𝐻  →  ( ℎ  ∈  𝑄  ↔  𝐻  ∈  𝑄 ) ) | 
						
							| 170 |  | fveq1 | ⊢ ( ℎ  =  𝐻  →  ( ℎ ‘ 𝑆 )  =  ( 𝐻 ‘ 𝑆 ) ) | 
						
							| 171 | 170 | breq2d | ⊢ ( ℎ  =  𝐻  →  ( 0  <  ( ℎ ‘ 𝑆 )  ↔  0  <  ( 𝐻 ‘ 𝑆 ) ) ) | 
						
							| 172 | 169 171 | anbi12d | ⊢ ( ℎ  =  𝐻  →  ( ( ℎ  ∈  𝑄  ∧  0  <  ( ℎ ‘ 𝑆 ) )  ↔  ( 𝐻  ∈  𝑄  ∧  0  <  ( 𝐻 ‘ 𝑆 ) ) ) ) | 
						
							| 173 | 165 168 172 | spcegf | ⊢ ( 𝐻  ∈  𝑄  →  ( ( 𝐻  ∈  𝑄  ∧  0  <  ( 𝐻 ‘ 𝑆 ) )  →  ∃ ℎ ( ℎ  ∈  𝑄  ∧  0  <  ( ℎ ‘ 𝑆 ) ) ) ) | 
						
							| 174 | 173 | anabsi5 | ⊢ ( ( 𝐻  ∈  𝑄  ∧  0  <  ( 𝐻 ‘ 𝑆 ) )  →  ∃ ℎ ( ℎ  ∈  𝑄  ∧  0  <  ( ℎ ‘ 𝑆 ) ) ) | 
						
							| 175 | 155 164 174 | syl2anc | ⊢ ( 𝜑  →  ∃ ℎ ( ℎ  ∈  𝑄  ∧  0  <  ( ℎ ‘ 𝑆 ) ) ) |