Description: This lemma is used to prove the existence of a function p_t as in Lemma 1 of BrosowskiDeutsh p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p in the subalgebra, such that p_t ( t_0 ) = 0 , p_t ( t ) > 0, and 0 <= p_t <= 1. Z is used for t_0 , S is used for t e. T - U , h is used for p_t . G is used for (h_t)^2 and the final h is a normalized version of G ( divided by its norm, see the variable N ). (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem36.1 | |
|
stoweidlem36.2 | |
||
stoweidlem36.3 | |
||
stoweidlem36.4 | |
||
stoweidlem36.5 | |
||
stoweidlem36.6 | |
||
stoweidlem36.7 | |
||
stoweidlem36.8 | |
||
stoweidlem36.9 | |
||
stoweidlem36.10 | |
||
stoweidlem36.11 | |
||
stoweidlem36.12 | |
||
stoweidlem36.13 | |
||
stoweidlem36.14 | |
||
stoweidlem36.15 | |
||
stoweidlem36.16 | |
||
stoweidlem36.17 | |
||
stoweidlem36.18 | |
||
stoweidlem36.19 | |
||
stoweidlem36.20 | |
||
Assertion | stoweidlem36 | |