Metamath Proof Explorer


Theorem stoweidlem36

Description: This lemma is used to prove the existence of a function p_t as in Lemma 1 of BrosowskiDeutsh p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p in the subalgebra, such that p_t ( t_0 ) = 0 , p_t ( t ) > 0, and 0 <= p_t <= 1. Z is used for t_0 , S is used for t e. T - U , h is used for p_t . G is used for (h_t)^2 and the final h is a normalized version of G ( divided by its norm, see the variable N ). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem36.1 _hQ
stoweidlem36.2 _tH
stoweidlem36.3 _tF
stoweidlem36.4 _tG
stoweidlem36.5 tφ
stoweidlem36.6 K=topGenran.
stoweidlem36.7 Q=hA|hZ=0tT0htht1
stoweidlem36.8 T=J
stoweidlem36.9 G=tTFtFt
stoweidlem36.10 N=supranG<
stoweidlem36.11 H=tTGtN
stoweidlem36.12 φJComp
stoweidlem36.13 φAJCnK
stoweidlem36.14 φfAgAtTftgtA
stoweidlem36.15 φxtTxA
stoweidlem36.16 φST
stoweidlem36.17 φZT
stoweidlem36.18 φFA
stoweidlem36.19 φFSFZ
stoweidlem36.20 φFZ=0
Assertion stoweidlem36 φhhQ0<hS

Proof

Step Hyp Ref Expression
1 stoweidlem36.1 _hQ
2 stoweidlem36.2 _tH
3 stoweidlem36.3 _tF
4 stoweidlem36.4 _tG
5 stoweidlem36.5 tφ
6 stoweidlem36.6 K=topGenran.
7 stoweidlem36.7 Q=hA|hZ=0tT0htht1
8 stoweidlem36.8 T=J
9 stoweidlem36.9 G=tTFtFt
10 stoweidlem36.10 N=supranG<
11 stoweidlem36.11 H=tTGtN
12 stoweidlem36.12 φJComp
13 stoweidlem36.13 φAJCnK
14 stoweidlem36.14 φfAgAtTftgtA
15 stoweidlem36.15 φxtTxA
16 stoweidlem36.16 φST
17 stoweidlem36.17 φZT
18 stoweidlem36.18 φFA
19 stoweidlem36.19 φFSFZ
20 stoweidlem36.20 φFZ=0
21 eqid JCnK=JCnK
22 3 nfeq2 tf=F
23 3 nfeq2 tg=F
24 22 23 14 stoweidlem6 φFAFAtTFtFtA
25 18 18 24 mpd3an23 φtTFtFtA
26 9 25 eqeltrid φGA
27 13 26 sseldd φGJCnK
28 6 8 21 27 fcnre φG:T
29 28 ffvelcdmda φtTGt
30 29 recnd φtTGt
31 16 ne0d φT
32 8 6 12 27 31 cncmpmax φsupranG<ranGsupranG<sTGssupranG<
33 32 simp2d φsupranG<
34 10 33 eqeltrid φN
35 34 recnd φN
36 35 adantr φtTN
37 0red φ0
38 28 16 ffvelcdmd φGS
39 13 18 sseldd φFJCnK
40 6 8 21 39 fcnre φF:T
41 40 16 ffvelcdmd φFS
42 19 20 neeqtrd φFS0
43 41 42 msqgt0d φ0<FSFS
44 41 41 remulcld φFSFS
45 nfcv _tS
46 3 45 nffv _tFS
47 nfcv _t×
48 46 47 46 nfov _tFSFS
49 fveq2 t=SFt=FS
50 49 49 oveq12d t=SFtFt=FSFS
51 45 48 50 9 fvmptf STFSFSGS=FSFS
52 16 44 51 syl2anc φGS=FSFS
53 43 52 breqtrrd φ0<GS
54 32 simp3d φsTGssupranG<
55 fveq2 s=SGs=GS
56 55 breq1d s=SGssupranG<GSsupranG<
57 56 rspccva sTGssupranG<STGSsupranG<
58 54 16 57 syl2anc φGSsupranG<
59 37 38 33 53 58 ltletrd φ0<supranG<
60 59 gt0ne0d φsupranG<0
61 10 neeq1i N0supranG<0
62 60 61 sylibr φN0
63 62 adantr φtTN0
64 30 36 63 divrecd φtTGtN=Gt1N
65 simpr φtTtT
66 34 62 rereccld φ1N
67 66 adantr φtT1N
68 eqid tT1N=tT1N
69 68 fvmpt2 tT1NtT1Nt=1N
70 65 67 69 syl2anc φtTtT1Nt=1N
71 70 oveq2d φtTGttT1Nt=Gt1N
72 64 71 eqtr4d φtTGtN=GttT1Nt
73 5 72 mpteq2da φtTGtN=tTGttT1Nt
74 11 73 eqtrid φH=tTGttT1Nt
75 15 stoweidlem4 φ1NtT1NA
76 66 75 mpdan φtT1NA
77 4 nfeq2 tf=G
78 nfmpt1 _ttT1N
79 78 nfeq2 tg=tT1N
80 77 79 14 stoweidlem6 φGAtT1NAtTGttT1NtA
81 26 76 80 mpd3an23 φtTGttT1NtA
82 74 81 eqeltrd φHA
83 28 17 ffvelcdmd φGZ
84 83 34 62 redivcld φGZN
85 nfcv _tZ
86 4 85 nffv _tGZ
87 nfcv _t÷
88 nfcv _tN
89 86 87 88 nfov _tGZN
90 fveq2 t=ZGt=GZ
91 90 oveq1d t=ZGtN=GZN
92 85 89 91 11 fvmptf ZTGZNHZ=GZN
93 17 84 92 syl2anc φHZ=GZN
94 0re 0
95 20 94 eqeltrdi φFZ
96 95 95 remulcld φFZFZ
97 3 85 nffv _tFZ
98 97 47 97 nfov _tFZFZ
99 fveq2 t=ZFt=FZ
100 99 99 oveq12d t=ZFtFt=FZFZ
101 85 98 100 9 fvmptf ZTFZFZGZ=FZFZ
102 17 96 101 syl2anc φGZ=FZFZ
103 20 20 oveq12d φFZFZ=00
104 0cn 0
105 104 mul02i 00=0
106 103 105 eqtrdi φFZFZ=0
107 102 106 eqtrd φGZ=0
108 107 oveq1d φGZN=0N
109 35 62 div0d φ0N=0
110 93 108 109 3eqtrd φHZ=0
111 40 ffvelcdmda φtTFt
112 111 msqge0d φtT0FtFt
113 111 111 remulcld φtTFtFt
114 9 fvmpt2 tTFtFtGt=FtFt
115 65 113 114 syl2anc φtTGt=FtFt
116 112 115 breqtrrd φtT0Gt
117 34 adantr φtTN
118 59 10 breqtrrdi φ0<N
119 118 adantr φtT0<N
120 divge0 Gt0GtN0<N0GtN
121 29 116 117 119 120 syl22anc φtT0GtN
122 29 117 63 redivcld φtTGtN
123 11 fvmpt2 tTGtNHt=GtN
124 65 122 123 syl2anc φtTHt=GtN
125 121 124 breqtrrd φtT0Ht
126 30 div1d φtTGt1=Gt
127 fveq2 s=tGs=Gt
128 127 breq1d s=tGssupranG<GtsupranG<
129 128 rspccva sTGssupranG<tTGtsupranG<
130 54 129 sylan φtTGtsupranG<
131 130 10 breqtrrdi φtTGtN
132 126 131 eqbrtrd φtTGt1N
133 1red φtT1
134 0lt1 0<1
135 134 a1i φtT0<1
136 lediv23 GtN0<N10<1GtN1Gt1N
137 29 117 119 133 135 136 syl122anc φtTGtN1Gt1N
138 132 137 mpbird φtTGtN1
139 124 138 eqbrtrd φtTHt1
140 125 139 jca φtT0HtHt1
141 140 ex φtT0HtHt1
142 5 141 ralrimi φtT0HtHt1
143 110 142 jca φHZ=0tT0HtHt1
144 fveq1 h=HhZ=HZ
145 144 eqeq1d h=HhZ=0HZ=0
146 2 nfeq2 th=H
147 fveq1 h=Hht=Ht
148 147 breq2d h=H0ht0Ht
149 147 breq1d h=Hht1Ht1
150 148 149 anbi12d h=H0htht10HtHt1
151 146 150 ralbid h=HtT0htht1tT0HtHt1
152 145 151 anbi12d h=HhZ=0tT0htht1HZ=0tT0HtHt1
153 152 elrab HhA|hZ=0tT0htht1HAHZ=0tT0HtHt1
154 82 143 153 sylanbrc φHhA|hZ=0tT0htht1
155 154 7 eleqtrrdi φHQ
156 38 34 53 118 divgt0d φ0<GSN
157 38 34 62 redivcld φGSN
158 4 45 nffv _tGS
159 158 87 88 nfov _tGSN
160 fveq2 t=SGt=GS
161 160 oveq1d t=SGtN=GSN
162 45 159 161 11 fvmptf STGSNHS=GSN
163 16 157 162 syl2anc φHS=GSN
164 156 163 breqtrrd φ0<HS
165 nfcv _hH
166 1 nfel2 hHQ
167 nfv h0<HS
168 166 167 nfan hHQ0<HS
169 eleq1 h=HhQHQ
170 fveq1 h=HhS=HS
171 170 breq2d h=H0<hS0<HS
172 169 171 anbi12d h=HhQ0<hSHQ0<HS
173 165 168 172 spcegf HQHQ0<HShhQ0<hS
174 173 anabsi5 HQ0<HShhQ0<hS
175 155 164 174 syl2anc φhhQ0<hS