| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncmpmax.1 |
|
| 2 |
|
cncmpmax.2 |
|
| 3 |
|
cncmpmax.3 |
|
| 4 |
|
cncmpmax.4 |
|
| 5 |
|
cncmpmax.5 |
|
| 6 |
1 2 3 4 5
|
evth |
|
| 7 |
|
eqid |
|
| 8 |
2 1 7 4
|
fcnre |
|
| 9 |
8
|
frnd |
|
| 10 |
9
|
adantr |
|
| 11 |
8
|
ffund |
|
| 12 |
11
|
adantr |
|
| 13 |
|
simpr |
|
| 14 |
8
|
adantr |
|
| 15 |
14
|
fdmd |
|
| 16 |
13 15
|
eleqtrrd |
|
| 17 |
|
fvelrn |
|
| 18 |
12 16 17
|
syl2anc |
|
| 19 |
18
|
adantrr |
|
| 20 |
|
ffn |
|
| 21 |
|
fvelrnb |
|
| 22 |
8 20 21
|
3syl |
|
| 23 |
22
|
biimpa |
|
| 24 |
|
df-rex |
|
| 25 |
23 24
|
sylib |
|
| 26 |
25
|
adantlr |
|
| 27 |
|
simprr |
|
| 28 |
|
simpllr |
|
| 29 |
|
simprl |
|
| 30 |
|
fveq2 |
|
| 31 |
30
|
breq1d |
|
| 32 |
31
|
rspccva |
|
| 33 |
28 29 32
|
syl2anc |
|
| 34 |
27 33
|
eqbrtrrd |
|
| 35 |
26 34
|
exlimddv |
|
| 36 |
35
|
ralrimiva |
|
| 37 |
36
|
adantrl |
|
| 38 |
|
ubelsupr |
|
| 39 |
10 19 37 38
|
syl3anc |
|
| 40 |
39
|
eqcomd |
|
| 41 |
40 19
|
eqeltrd |
|
| 42 |
10 41
|
sseldd |
|
| 43 |
|
simplrr |
|
| 44 |
43 32
|
sylancom |
|
| 45 |
40
|
adantr |
|
| 46 |
44 45
|
breqtrrd |
|
| 47 |
46
|
ralrimiva |
|
| 48 |
30
|
breq1d |
|
| 49 |
48
|
cbvralvw |
|
| 50 |
47 49
|
sylibr |
|
| 51 |
41 42 50
|
3jca |
|
| 52 |
6 51
|
rexlimddv |
|