Metamath Proof Explorer


Theorem lediv23

Description: Swap denominator with other side of 'less than or equal to'. (Contributed by NM, 30-May-2005)

Ref Expression
Assertion lediv23 AB0<BC0<CABCACB

Proof

Step Hyp Ref Expression
1 simpl B0<BB
2 gt0ne0 B0<BB0
3 1 2 jca B0<BBB0
4 redivcl ABB0AB
5 4 3expb ABB0AB
6 3 5 sylan2 AB0<BAB
7 6 3adant3 AB0<BCAB
8 simp3 AB0<BCC
9 simp2 AB0<BCB0<B
10 lemul1 ABCB0<BABCABBCB
11 7 8 9 10 syl3anc AB0<BCABCABBCB
12 11 3adant3r AB0<BC0<CABCABBCB
13 recn AA
14 13 adantr AB0<BA
15 recn BB
16 15 ad2antrl AB0<BB
17 2 adantl AB0<BB0
18 14 16 17 divcan1d AB0<BABB=A
19 18 3adant3 AB0<BC0<CABB=A
20 19 breq1d AB0<BC0<CABBCBACB
21 remulcl CBCB
22 21 ancoms BCCB
23 22 adantrr BC0<CCB
24 23 3adant1 ABC0<CCB
25 lediv1 ACBC0<CACBACCBC
26 24 25 syld3an2 ABC0<CACBACCBC
27 recn CC
28 27 adantr C0<CC
29 gt0ne0 C0<CC0
30 28 29 jca C0<CCC0
31 divcan3 BCC0CBC=B
32 31 3expb BCC0CBC=B
33 15 30 32 syl2an BC0<CCBC=B
34 33 3adant1 ABC0<CCBC=B
35 34 breq2d ABC0<CACCBCACB
36 26 35 bitrd ABC0<CACBACB
37 36 3adant2r AB0<BC0<CACBACB
38 12 20 37 3bitrd AB0<BC0<CABCACB