Metamath Proof Explorer
Description: A nonzero square is positive. Theorem I.20 of Apostol p. 20.
(Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
msqgt0d.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
|
Assertion |
msqgt0d |
⊢ ( 𝜑 → 0 < ( 𝐴 · 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
msqgt0d.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
3 |
|
msqgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 · 𝐴 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → 0 < ( 𝐴 · 𝐴 ) ) |