Metamath Proof Explorer


Theorem msqgt0d

Description: A nonzero square is positive. Theorem I.20 of Apostol p. 20. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 ( 𝜑𝐴 ∈ ℝ )
msqgt0d.2 ( 𝜑𝐴 ≠ 0 )
Assertion msqgt0d ( 𝜑 → 0 < ( 𝐴 · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 leidd.1 ( 𝜑𝐴 ∈ ℝ )
2 msqgt0d.2 ( 𝜑𝐴 ≠ 0 )
3 msqgt0 ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 · 𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → 0 < ( 𝐴 · 𝐴 ) )