Metamath Proof Explorer
		
		
		
		Description:  A nonzero square is positive.  Theorem I.20 of Apostol p. 20.
         (Contributed by Mario Carneiro, 27-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | leidd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | msqgt0d.2 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
				
					|  | Assertion | msqgt0d | ⊢  ( 𝜑  →  0  <  ( 𝐴  ·  𝐴 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | leidd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | msqgt0d.2 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 3 |  | msqgt0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  0  <  ( 𝐴  ·  𝐴 ) ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑  →  0  <  ( 𝐴  ·  𝐴 ) ) |