Description: A nonzero square is positive. Theorem I.20 of Apostol p. 20. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | leidd.1 | |- ( ph -> A e. RR ) |
|
msqgt0d.2 | |- ( ph -> A =/= 0 ) |
||
Assertion | msqgt0d | |- ( ph -> 0 < ( A x. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | |- ( ph -> A e. RR ) |
|
2 | msqgt0d.2 | |- ( ph -> A =/= 0 ) |
|
3 | msqgt0 | |- ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A x. A ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> 0 < ( A x. A ) ) |