| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sub2cncfd.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
sub2cncfd.2 |
|- F = ( x e. CC |-> ( A - x ) ) |
| 3 |
|
ssid |
|- CC C_ CC |
| 4 |
3
|
a1i |
|- ( ph -> CC C_ CC ) |
| 5 |
|
cncfmptc |
|- ( ( A e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) |
| 6 |
1 4 4 5
|
syl3anc |
|- ( ph -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) |
| 7 |
|
cncfmptid |
|- ( ( CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) |
| 8 |
3 3 7
|
mp2an |
|- ( x e. CC |-> x ) e. ( CC -cn-> CC ) |
| 9 |
8
|
a1i |
|- ( ph -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) |
| 10 |
6 9
|
subcncf |
|- ( ph -> ( x e. CC |-> ( A - x ) ) e. ( CC -cn-> CC ) ) |
| 11 |
2 10
|
eqeltrid |
|- ( ph -> F e. ( CC -cn-> CC ) ) |