Metamath Proof Explorer


Theorem subaddi

Description: Relationship between subtraction and addition. (Contributed by NM, 26-Nov-1994) (Revised by Mario Carneiro, 21-Dec-2013)

Ref Expression
Hypotheses negidi.1
|- A e. CC
pncan3i.2
|- B e. CC
subadd.3
|- C e. CC
Assertion subaddi
|- ( ( A - B ) = C <-> ( B + C ) = A )

Proof

Step Hyp Ref Expression
1 negidi.1
 |-  A e. CC
2 pncan3i.2
 |-  B e. CC
3 subadd.3
 |-  C e. CC
4 subadd
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = C <-> ( B + C ) = A ) )
5 1 2 3 4 mp3an
 |-  ( ( A - B ) = C <-> ( B + C ) = A )