Description: Every magma is trivially a submagma of itself. (Contributed by AV, 26-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | submgmss.b | |- B = ( Base ` M ) |
|
Assertion | submgmid | |- ( M e. Mgm -> B e. ( SubMgm ` M ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submgmss.b | |- B = ( Base ` M ) |
|
2 | ssidd | |- ( M e. Mgm -> B C_ B ) |
|
3 | 1 | ressid | |- ( M e. Mgm -> ( M |`s B ) = M ) |
4 | id | |- ( M e. Mgm -> M e. Mgm ) |
|
5 | 3 4 | eqeltrd | |- ( M e. Mgm -> ( M |`s B ) e. Mgm ) |
6 | eqid | |- ( M |`s B ) = ( M |`s B ) |
|
7 | 1 6 | issubmgm2 | |- ( M e. Mgm -> ( B e. ( SubMgm ` M ) <-> ( B C_ B /\ ( M |`s B ) e. Mgm ) ) ) |
8 | 2 5 7 | mpbir2and | |- ( M e. Mgm -> B e. ( SubMgm ` M ) ) |