Metamath Proof Explorer


Theorem submgmid

Description: Every magma is trivially a submagma of itself. (Contributed by AV, 26-Feb-2020)

Ref Expression
Hypothesis submgmss.b
|- B = ( Base ` M )
Assertion submgmid
|- ( M e. Mgm -> B e. ( SubMgm ` M ) )

Proof

Step Hyp Ref Expression
1 submgmss.b
 |-  B = ( Base ` M )
2 ssidd
 |-  ( M e. Mgm -> B C_ B )
3 1 ressid
 |-  ( M e. Mgm -> ( M |`s B ) = M )
4 id
 |-  ( M e. Mgm -> M e. Mgm )
5 3 4 eqeltrd
 |-  ( M e. Mgm -> ( M |`s B ) e. Mgm )
6 eqid
 |-  ( M |`s B ) = ( M |`s B )
7 1 6 issubmgm2
 |-  ( M e. Mgm -> ( B e. ( SubMgm ` M ) <-> ( B C_ B /\ ( M |`s B ) e. Mgm ) ) )
8 2 5 7 mpbir2and
 |-  ( M e. Mgm -> B e. ( SubMgm ` M ) )