Metamath Proof Explorer


Theorem submgmid

Description: Every magma is trivially a submagma of itself. (Contributed by AV, 26-Feb-2020)

Ref Expression
Hypothesis submgmss.b B = Base M
Assertion submgmid M Mgm B SubMgm M

Proof

Step Hyp Ref Expression
1 submgmss.b B = Base M
2 ssidd M Mgm B B
3 1 ressid M Mgm M 𝑠 B = M
4 id M Mgm M Mgm
5 3 4 eqeltrd M Mgm M 𝑠 B Mgm
6 eqid M 𝑠 B = M 𝑠 B
7 1 6 issubmgm2 M Mgm B SubMgm M B B M 𝑠 B Mgm
8 2 5 7 mpbir2and M Mgm B SubMgm M