Metamath Proof Explorer


Theorem issubmgm2

Description: Submagmas are subsets that are also magmas. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypotheses issubmgm2.b B = Base M
issubmgm2.h H = M 𝑠 S
Assertion issubmgm2 M Mgm S SubMgm M S B H Mgm

Proof

Step Hyp Ref Expression
1 issubmgm2.b B = Base M
2 issubmgm2.h H = M 𝑠 S
3 eqid + M = + M
4 1 3 issubmgm M Mgm S SubMgm M S B x S y S x + M y S
5 2 1 ressbas2 S B S = Base H
6 5 ad2antlr M Mgm S B x S y S x + M y S S = Base H
7 ovex M 𝑠 S V
8 2 7 eqeltri H V
9 8 a1i M Mgm S B x S y S x + M y S H V
10 1 fvexi B V
11 10 ssex S B S V
12 11 ad2antlr M Mgm S B x S y S x + M y S S V
13 2 3 ressplusg S V + M = + H
14 12 13 syl M Mgm S B x S y S x + M y S + M = + H
15 oveq1 x = a x + M y = a + M y
16 15 eleq1d x = a x + M y S a + M y S
17 oveq2 y = b a + M y = a + M b
18 17 eleq1d y = b a + M y S a + M b S
19 16 18 rspc2v a S b S x S y S x + M y S a + M b S
20 19 com12 x S y S x + M y S a S b S a + M b S
21 20 adantl M Mgm S B x S y S x + M y S a S b S a + M b S
22 21 3impib M Mgm S B x S y S x + M y S a S b S a + M b S
23 6 9 14 22 ismgmd M Mgm S B x S y S x + M y S H Mgm
24 simplr M Mgm S B H Mgm x S y S H Mgm
25 simprl M Mgm S B H Mgm x S y S x S
26 5 ad3antlr M Mgm S B H Mgm x S y S S = Base H
27 25 26 eleqtrd M Mgm S B H Mgm x S y S x Base H
28 simpr x S y S y S
29 28 adantl M Mgm S B H Mgm x S y S y S
30 29 26 eleqtrd M Mgm S B H Mgm x S y S y Base H
31 eqid Base H = Base H
32 eqid + H = + H
33 31 32 mgmcl H Mgm x Base H y Base H x + H y Base H
34 24 27 30 33 syl3anc M Mgm S B H Mgm x S y S x + H y Base H
35 11 ad2antlr M Mgm S B H Mgm S V
36 35 13 syl M Mgm S B H Mgm + M = + H
37 36 oveqdr M Mgm S B H Mgm x S y S x + M y = x + H y
38 34 37 26 3eltr4d M Mgm S B H Mgm x S y S x + M y S
39 38 ralrimivva M Mgm S B H Mgm x S y S x + M y S
40 23 39 impbida M Mgm S B x S y S x + M y S H Mgm
41 40 pm5.32da M Mgm S B x S y S x + M y S S B H Mgm
42 4 41 bitrd M Mgm S SubMgm M S B H Mgm