Step |
Hyp |
Ref |
Expression |
1 |
|
issubmgm2.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
issubmgm2.h |
⊢ 𝐻 = ( 𝑀 ↾s 𝑆 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
4 |
1 3
|
issubmgm |
⊢ ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ) |
5 |
2 1
|
ressbas2 |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ 𝐻 ) ) |
6 |
5
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
7 |
|
ovex |
⊢ ( 𝑀 ↾s 𝑆 ) ∈ V |
8 |
2 7
|
eqeltri |
⊢ 𝐻 ∈ V |
9 |
8
|
a1i |
⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) → 𝐻 ∈ V ) |
10 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
11 |
10
|
ssex |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ V ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) → 𝑆 ∈ V ) |
13 |
2 3
|
ressplusg |
⊢ ( 𝑆 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ 𝐻 ) ) |
14 |
12 13
|
syl |
⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) → ( +g ‘ 𝑀 ) = ( +g ‘ 𝐻 ) ) |
15 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑦 ) ) |
16 |
15
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ↔ ( 𝑎 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
17 |
|
oveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) |
18 |
17
|
eleq1d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ↔ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝑆 ) ) |
19 |
16 18
|
rspc2v |
⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝑆 ) ) |
20 |
19
|
com12 |
⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 → ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝑆 ) ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) → ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝑆 ) ) |
22 |
21
|
3impib |
⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝑆 ) |
23 |
6 9 14 22
|
ismgmd |
⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) → 𝐻 ∈ Mgm ) |
24 |
|
simplr |
⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝐻 ∈ Mgm ) |
25 |
|
simprl |
⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ 𝑆 ) |
26 |
5
|
ad3antlr |
⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
27 |
25 26
|
eleqtrd |
⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) |
28 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
29 |
28
|
adantl |
⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) |
30 |
29 26
|
eleqtrd |
⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝐻 ) ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
32 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
33 |
31 32
|
mgmcl |
⊢ ( ( 𝐻 ∈ Mgm ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
34 |
24 27 30 33
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
35 |
11
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑆 ∈ V ) |
36 |
35 13
|
syl |
⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → ( +g ‘ 𝑀 ) = ( +g ‘ 𝐻 ) ) |
37 |
36
|
oveqdr |
⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
38 |
34 37 26
|
3eltr4d |
⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) |
39 |
38
|
ralrimivva |
⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) |
40 |
23 39
|
impbida |
⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ↔ 𝐻 ∈ Mgm ) ) |
41 |
40
|
pm5.32da |
⊢ ( 𝑀 ∈ Mgm → ( ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝐻 ∈ Mgm ) ) ) |
42 |
4 41
|
bitrd |
⊢ ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝐻 ∈ Mgm ) ) ) |