Step |
Hyp |
Ref |
Expression |
1 |
|
rabsubmgmd.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
rabsubmgmd.p |
⊢ + = ( +g ‘ 𝑀 ) |
3 |
|
rabsubmgmd.m |
⊢ ( 𝜑 → 𝑀 ∈ Mgm ) |
4 |
|
rabsubmgmd.cp |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ) → 𝜂 ) |
5 |
|
rabsubmgmd.th |
⊢ ( 𝑧 = 𝑥 → ( 𝜓 ↔ 𝜃 ) ) |
6 |
|
rabsubmgmd.ta |
⊢ ( 𝑧 = 𝑦 → ( 𝜓 ↔ 𝜏 ) ) |
7 |
|
rabsubmgmd.et |
⊢ ( 𝑧 = ( 𝑥 + 𝑦 ) → ( 𝜓 ↔ 𝜂 ) ) |
8 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 |
9 |
8
|
a1i |
⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 ) |
10 |
5
|
elrab |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ) |
11 |
6
|
elrab |
⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) |
12 |
10 11
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∧ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝑀 ∈ Mgm ) |
14 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝑥 ∈ 𝐵 ) |
15 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝑦 ∈ 𝐵 ) |
16 |
1 2
|
mgmcl |
⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
17 |
13 14 15 16
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
18 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) → 𝑥 ∈ 𝐵 ) |
19 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) → 𝑦 ∈ 𝐵 ) |
20 |
18 19
|
anim12i |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
21 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) → 𝜃 ) |
22 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) → 𝜏 ) |
23 |
21 22
|
anim12i |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) → ( 𝜃 ∧ 𝜏 ) ) |
24 |
20 23
|
jca |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ) |
25 |
24 4
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝜂 ) |
26 |
7 17 25
|
elrabd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) |
27 |
12 26
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∧ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ) → ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) |
28 |
27
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) |
29 |
1 2
|
issubmgm |
⊢ ( 𝑀 ∈ Mgm → ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∈ ( SubMgm ‘ 𝑀 ) ↔ ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ) ) |
30 |
3 29
|
syl |
⊢ ( 𝜑 → ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∈ ( SubMgm ‘ 𝑀 ) ↔ ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ) ) |
31 |
9 28 30
|
mpbir2and |
⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∈ ( SubMgm ‘ 𝑀 ) ) |