| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submmulgcl.t |
|- .xb = ( .g ` G ) |
| 2 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 3 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 4 |
|
submrcl |
|- ( S e. ( SubMnd ` G ) -> G e. Mnd ) |
| 5 |
2
|
submss |
|- ( S e. ( SubMnd ` G ) -> S C_ ( Base ` G ) ) |
| 6 |
3
|
submcl |
|- ( ( S e. ( SubMnd ` G ) /\ x e. S /\ y e. S ) -> ( x ( +g ` G ) y ) e. S ) |
| 7 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 8 |
7
|
subm0cl |
|- ( S e. ( SubMnd ` G ) -> ( 0g ` G ) e. S ) |
| 9 |
2 1 3 4 5 6 7 8
|
mulgnn0subcl |
|- ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> ( N .xb X ) e. S ) |