Metamath Proof Explorer


Theorem subrngrng

Description: A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025)

Ref Expression
Hypothesis subrngrng.1
|- S = ( R |`s A )
Assertion subrngrng
|- ( A e. ( SubRng ` R ) -> S e. Rng )

Proof

Step Hyp Ref Expression
1 subrngrng.1
 |-  S = ( R |`s A )
2 simp2
 |-  ( ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ ( Base ` R ) ) -> ( R |`s A ) e. Rng )
3 eqid
 |-  ( Base ` R ) = ( Base ` R )
4 3 issubrng
 |-  ( A e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ ( Base ` R ) ) )
5 1 eleq1i
 |-  ( S e. Rng <-> ( R |`s A ) e. Rng )
6 2 4 5 3imtr4i
 |-  ( A e. ( SubRng ` R ) -> S e. Rng )