Description: A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subrngrng.1 | |- S = ( R |`s A ) |
|
Assertion | subrngrng | |- ( A e. ( SubRng ` R ) -> S e. Rng ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrngrng.1 | |- S = ( R |`s A ) |
|
2 | simp2 | |- ( ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ ( Base ` R ) ) -> ( R |`s A ) e. Rng ) |
|
3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
4 | 3 | issubrng | |- ( A e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ ( Base ` R ) ) ) |
5 | 1 | eleq1i | |- ( S e. Rng <-> ( R |`s A ) e. Rng ) |
6 | 2 4 5 | 3imtr4i | |- ( A e. ( SubRng ` R ) -> S e. Rng ) |