Metamath Proof Explorer


Theorem subspopn

Description: An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Assertion subspopn
|- ( ( ( J e. Top /\ A e. V ) /\ ( B e. J /\ B C_ A ) ) -> B e. ( J |`t A ) )

Proof

Step Hyp Ref Expression
1 elrestr
 |-  ( ( J e. Top /\ A e. V /\ B e. J ) -> ( B i^i A ) e. ( J |`t A ) )
2 df-ss
 |-  ( B C_ A <-> ( B i^i A ) = B )
3 eleq1
 |-  ( ( B i^i A ) = B -> ( ( B i^i A ) e. ( J |`t A ) <-> B e. ( J |`t A ) ) )
4 2 3 sylbi
 |-  ( B C_ A -> ( ( B i^i A ) e. ( J |`t A ) <-> B e. ( J |`t A ) ) )
5 1 4 syl5ibcom
 |-  ( ( J e. Top /\ A e. V /\ B e. J ) -> ( B C_ A -> B e. ( J |`t A ) ) )
6 5 3expa
 |-  ( ( ( J e. Top /\ A e. V ) /\ B e. J ) -> ( B C_ A -> B e. ( J |`t A ) ) )
7 6 impr
 |-  ( ( ( J e. Top /\ A e. V ) /\ ( B e. J /\ B C_ A ) ) -> B e. ( J |`t A ) )