Description: Equality theorem for sum. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | sumeq2 | |- ( A. k e. A B = C -> sum_ k e. A B = sum_ k e. A C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |- ( B = C -> ( _I ` B ) = ( _I ` C ) ) |
|
2 | 1 | ralimi | |- ( A. k e. A B = C -> A. k e. A ( _I ` B ) = ( _I ` C ) ) |
3 | sumeq2ii | |- ( A. k e. A ( _I ` B ) = ( _I ` C ) -> sum_ k e. A B = sum_ k e. A C ) |
|
4 | 2 3 | syl | |- ( A. k e. A B = C -> sum_ k e. A B = sum_ k e. A C ) |