Metamath Proof Explorer


Theorem suprleubii

Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 6-Sep-2014)

Ref Expression
Hypothesis sup3i.1
|- ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x )
Assertion suprleubii
|- ( B e. RR -> ( sup ( A , RR , < ) <_ B <-> A. z e. A z <_ B ) )

Proof

Step Hyp Ref Expression
1 sup3i.1
 |-  ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x )
2 suprleub
 |-  ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( sup ( A , RR , < ) <_ B <-> A. z e. A z <_ B ) )
3 1 2 mpan
 |-  ( B e. RR -> ( sup ( A , RR , < ) <_ B <-> A. z e. A z <_ B ) )