Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 6-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sup3i.1 | |- ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) |
|
| Assertion | suprleubii | |- ( B e. RR -> ( sup ( A , RR , < ) <_ B <-> A. z e. A z <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sup3i.1 | |- ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) |
|
| 2 | suprleub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( sup ( A , RR , < ) <_ B <-> A. z e. A z <_ B ) ) |
|
| 3 | 1 2 | mpan | |- ( B e. RR -> ( sup ( A , RR , < ) <_ B <-> A. z e. A z <_ B ) ) |