Metamath Proof Explorer


Theorem sylnbi

Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013)

Ref Expression
Hypotheses sylnbi.1
|- ( ph <-> ps )
sylnbi.2
|- ( -. ps -> ch )
Assertion sylnbi
|- ( -. ph -> ch )

Proof

Step Hyp Ref Expression
1 sylnbi.1
 |-  ( ph <-> ps )
2 sylnbi.2
 |-  ( -. ps -> ch )
3 1 notbii
 |-  ( -. ph <-> -. ps )
4 3 2 sylbi
 |-  ( -. ph -> ch )