Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symdifeq2 | |- ( A = B -> ( C /_\ A ) = ( C /_\ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symdifeq1 | |- ( A = B -> ( A /_\ C ) = ( B /_\ C ) ) |
|
| 2 | symdifcom | |- ( C /_\ A ) = ( A /_\ C ) |
|
| 3 | symdifcom | |- ( C /_\ B ) = ( B /_\ C ) |
|
| 4 | 1 2 3 | 3eqtr4g | |- ( A = B -> ( C /_\ A ) = ( C /_\ B ) ) |