| Step | Hyp | Ref | Expression | 
						
							| 1 |  | taylpfval.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | taylpfval.f |  |-  ( ph -> F : A --> CC ) | 
						
							| 3 |  | taylpfval.a |  |-  ( ph -> A C_ S ) | 
						
							| 4 |  | taylpfval.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 5 |  | taylpfval.b |  |-  ( ph -> B e. dom ( ( S Dn F ) ` N ) ) | 
						
							| 6 |  | taylpfval.t |  |-  T = ( N ( S Tayl F ) B ) | 
						
							| 7 |  | taylpval.x |  |-  ( ph -> X e. CC ) | 
						
							| 8 | 1 2 3 4 5 6 | taylpfval |  |-  ( ph -> T = ( x e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) | 
						
							| 9 |  | simplr |  |-  ( ( ( ph /\ x = X ) /\ k e. ( 0 ... N ) ) -> x = X ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ( ( ph /\ x = X ) /\ k e. ( 0 ... N ) ) -> ( x - B ) = ( X - B ) ) | 
						
							| 11 | 10 | oveq1d |  |-  ( ( ( ph /\ x = X ) /\ k e. ( 0 ... N ) ) -> ( ( x - B ) ^ k ) = ( ( X - B ) ^ k ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( ( ( ph /\ x = X ) /\ k e. ( 0 ... N ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) ) | 
						
							| 13 | 12 | sumeq2dv |  |-  ( ( ph /\ x = X ) -> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) ) | 
						
							| 14 |  | sumex |  |-  sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) e. _V | 
						
							| 15 | 14 | a1i |  |-  ( ph -> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) e. _V ) | 
						
							| 16 | 8 13 7 15 | fvmptd |  |-  ( ph -> ( T ` X ) = sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) ) |