| Step |
Hyp |
Ref |
Expression |
| 1 |
|
taylpfval.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
taylpfval.f |
|- ( ph -> F : A --> CC ) |
| 3 |
|
taylpfval.a |
|- ( ph -> A C_ S ) |
| 4 |
|
taylpfval.n |
|- ( ph -> N e. NN0 ) |
| 5 |
|
taylpfval.b |
|- ( ph -> B e. dom ( ( S Dn F ) ` N ) ) |
| 6 |
|
taylpfval.t |
|- T = ( N ( S Tayl F ) B ) |
| 7 |
4
|
orcd |
|- ( ph -> ( N e. NN0 \/ N = +oo ) ) |
| 8 |
1 2 3 4 5
|
taylplem1 |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
| 9 |
1 2 3 7 8 6
|
taylfval |
|- ( ph -> T = U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) |
| 10 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 11 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 12 |
|
cnring |
|- CCfld e. Ring |
| 13 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
| 14 |
12 13
|
mp1i |
|- ( ( ph /\ x e. CC ) -> CCfld e. CMnd ) |
| 15 |
|
cnfldtps |
|- CCfld e. TopSp |
| 16 |
15
|
a1i |
|- ( ( ph /\ x e. CC ) -> CCfld e. TopSp ) |
| 17 |
|
ovex |
|- ( 0 [,] N ) e. _V |
| 18 |
17
|
inex1 |
|- ( ( 0 [,] N ) i^i ZZ ) e. _V |
| 19 |
18
|
a1i |
|- ( ( ph /\ x e. CC ) -> ( ( 0 [,] N ) i^i ZZ ) e. _V ) |
| 20 |
1 2 3 7 8
|
taylfvallem1 |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) e. CC ) |
| 21 |
20
|
fmpttd |
|- ( ( ph /\ x e. CC ) -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) : ( ( 0 [,] N ) i^i ZZ ) --> CC ) |
| 22 |
|
eqid |
|- ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) = ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) |
| 23 |
|
0z |
|- 0 e. ZZ |
| 24 |
4
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 25 |
|
fzval2 |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 ... N ) = ( ( 0 [,] N ) i^i ZZ ) ) |
| 26 |
23 24 25
|
sylancr |
|- ( ph -> ( 0 ... N ) = ( ( 0 [,] N ) i^i ZZ ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ x e. CC ) -> ( 0 ... N ) = ( ( 0 [,] N ) i^i ZZ ) ) |
| 28 |
|
fzfid |
|- ( ( ph /\ x e. CC ) -> ( 0 ... N ) e. Fin ) |
| 29 |
27 28
|
eqeltrrd |
|- ( ( ph /\ x e. CC ) -> ( ( 0 [,] N ) i^i ZZ ) e. Fin ) |
| 30 |
|
ovexd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) e. _V ) |
| 31 |
|
c0ex |
|- 0 e. _V |
| 32 |
31
|
a1i |
|- ( ( ph /\ x e. CC ) -> 0 e. _V ) |
| 33 |
22 29 30 32
|
fsuppmptdm |
|- ( ( ph /\ x e. CC ) -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) finSupp 0 ) |
| 34 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 35 |
34
|
cnfldhaus |
|- ( TopOpen ` CCfld ) e. Haus |
| 36 |
35
|
a1i |
|- ( ( ph /\ x e. CC ) -> ( TopOpen ` CCfld ) e. Haus ) |
| 37 |
10 11 14 16 19 21 33 34 36
|
haustsmsid |
|- ( ( ph /\ x e. CC ) -> ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) = { ( CCfld gsum ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) } ) |
| 38 |
29 20
|
gsumfsum |
|- ( ( ph /\ x e. CC ) -> ( CCfld gsum ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) = sum_ k e. ( ( 0 [,] N ) i^i ZZ ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) |
| 39 |
27
|
sumeq1d |
|- ( ( ph /\ x e. CC ) -> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) = sum_ k e. ( ( 0 [,] N ) i^i ZZ ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) |
| 40 |
38 39
|
eqtr4d |
|- ( ( ph /\ x e. CC ) -> ( CCfld gsum ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) |
| 41 |
40
|
sneqd |
|- ( ( ph /\ x e. CC ) -> { ( CCfld gsum ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) } = { sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) } ) |
| 42 |
37 41
|
eqtrd |
|- ( ( ph /\ x e. CC ) -> ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) = { sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) } ) |
| 43 |
42
|
xpeq2d |
|- ( ( ph /\ x e. CC ) -> ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) = ( { x } X. { sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) } ) ) |
| 44 |
43
|
iuneq2dv |
|- ( ph -> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) = U_ x e. CC ( { x } X. { sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) } ) ) |
| 45 |
9 44
|
eqtrd |
|- ( ph -> T = U_ x e. CC ( { x } X. { sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) } ) ) |
| 46 |
|
dfmpt3 |
|- ( x e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) = U_ x e. CC ( { x } X. { sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) } ) |
| 47 |
45 46
|
eqtr4di |
|- ( ph -> T = ( x e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) |