| Step |
Hyp |
Ref |
Expression |
| 1 |
|
taylpfval.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
taylpfval.f |
|- ( ph -> F : A --> CC ) |
| 3 |
|
taylpfval.a |
|- ( ph -> A C_ S ) |
| 4 |
|
taylpfval.n |
|- ( ph -> N e. NN0 ) |
| 5 |
|
taylpfval.b |
|- ( ph -> B e. dom ( ( S Dn F ) ` N ) ) |
| 6 |
|
0z |
|- 0 e. ZZ |
| 7 |
4
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 8 |
|
fzval2 |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 ... N ) = ( ( 0 [,] N ) i^i ZZ ) ) |
| 9 |
6 7 8
|
sylancr |
|- ( ph -> ( 0 ... N ) = ( ( 0 [,] N ) i^i ZZ ) ) |
| 10 |
9
|
eleq2d |
|- ( ph -> ( k e. ( 0 ... N ) <-> k e. ( ( 0 [,] N ) i^i ZZ ) ) ) |
| 11 |
10
|
biimpar |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ( 0 ... N ) ) |
| 12 |
|
cnex |
|- CC e. _V |
| 13 |
12
|
a1i |
|- ( ph -> CC e. _V ) |
| 14 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) |
| 15 |
13 1 2 3 14
|
syl22anc |
|- ( ph -> F e. ( CC ^pm S ) ) |
| 16 |
1 15
|
jca |
|- ( ph -> ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) ) |
| 17 |
|
dvn2bss |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` k ) ) |
| 18 |
17
|
3expa |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` k ) ) |
| 19 |
16 18
|
sylan |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` k ) ) |
| 20 |
5
|
adantr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> B e. dom ( ( S Dn F ) ` N ) ) |
| 21 |
19 20
|
sseldd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
| 22 |
11 21
|
syldan |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |