| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> S e. { RR , CC } ) |
| 2 |
|
simp2 |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> F e. ( CC ^pm S ) ) |
| 3 |
|
elfznn0 |
|- ( M e. ( 0 ... N ) -> M e. NN0 ) |
| 4 |
3
|
3ad2ant3 |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> M e. NN0 ) |
| 5 |
|
elfzuz3 |
|- ( M e. ( 0 ... N ) -> N e. ( ZZ>= ` M ) ) |
| 6 |
5
|
3ad2ant3 |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> N e. ( ZZ>= ` M ) ) |
| 7 |
|
uznn0sub |
|- ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 ) |
| 8 |
6 7
|
syl |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( N - M ) e. NN0 ) |
| 9 |
|
dvnadd |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( M e. NN0 /\ ( N - M ) e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` ( M + ( N - M ) ) ) ) |
| 10 |
1 2 4 8 9
|
syl22anc |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` ( M + ( N - M ) ) ) ) |
| 11 |
4
|
nn0cnd |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> M e. CC ) |
| 12 |
|
elfzuz2 |
|- ( M e. ( 0 ... N ) -> N e. ( ZZ>= ` 0 ) ) |
| 13 |
12
|
3ad2ant3 |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> N e. ( ZZ>= ` 0 ) ) |
| 14 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 15 |
13 14
|
eleqtrrdi |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> N e. NN0 ) |
| 16 |
15
|
nn0cnd |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> N e. CC ) |
| 17 |
11 16
|
pncan3d |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( M + ( N - M ) ) = N ) |
| 18 |
17
|
fveq2d |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( ( S Dn F ) ` ( M + ( N - M ) ) ) = ( ( S Dn F ) ` N ) ) |
| 19 |
10 18
|
eqtrd |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` N ) ) |
| 20 |
19
|
dmeqd |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = dom ( ( S Dn F ) ` N ) ) |
| 21 |
|
cnex |
|- CC e. _V |
| 22 |
21
|
a1i |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> CC e. _V ) |
| 23 |
|
dvnf |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. NN0 ) -> ( ( S Dn F ) ` M ) : dom ( ( S Dn F ) ` M ) --> CC ) |
| 24 |
3 23
|
syl3an3 |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( ( S Dn F ) ` M ) : dom ( ( S Dn F ) ` M ) --> CC ) |
| 25 |
|
dvnbss |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. NN0 ) -> dom ( ( S Dn F ) ` M ) C_ dom F ) |
| 26 |
3 25
|
syl3an3 |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` M ) C_ dom F ) |
| 27 |
|
elpmi |
|- ( F e. ( CC ^pm S ) -> ( F : dom F --> CC /\ dom F C_ S ) ) |
| 28 |
27
|
3ad2ant2 |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( F : dom F --> CC /\ dom F C_ S ) ) |
| 29 |
28
|
simprd |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> dom F C_ S ) |
| 30 |
26 29
|
sstrd |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` M ) C_ S ) |
| 31 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( ( ( S Dn F ) ` M ) : dom ( ( S Dn F ) ` M ) --> CC /\ dom ( ( S Dn F ) ` M ) C_ S ) ) -> ( ( S Dn F ) ` M ) e. ( CC ^pm S ) ) |
| 32 |
22 1 24 30 31
|
syl22anc |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> ( ( S Dn F ) ` M ) e. ( CC ^pm S ) ) |
| 33 |
|
dvnbss |
|- ( ( S e. { RR , CC } /\ ( ( S Dn F ) ` M ) e. ( CC ^pm S ) /\ ( N - M ) e. NN0 ) -> dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) C_ dom ( ( S Dn F ) ` M ) ) |
| 34 |
1 32 8 33
|
syl3anc |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) C_ dom ( ( S Dn F ) ` M ) ) |
| 35 |
20 34
|
eqsstrrd |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` M ) ) |